精英家教網 > 初中數學 > 題目詳情
(2010•金華)一方有難,八方支援.2010年4月14日青海玉樹發(fā)生7.1級強烈地震,給玉樹人民造成了巨大的損失.災難發(fā)生后,實驗中學舉行了愛心捐款活動,全校同學紛紛拿出自己的零花錢,踴躍捐款支援災區(qū)人民﹒小慧對捐款情況進行了抽樣調查,抽取了40名同學的捐款數據,把數據進行分組、列頻數分布表后,繪制了頻數分布直方圖.圖中從左到右各長方形高度之比為3:4:5:7:1(如圖).
(1)捐款20元這一組的頻數是______;
(2)40名同學捐款數據的中位數是______;
(3)若該校捐款金額不少于34500元,請估算該校捐款同學的人數至少有多少名?

【答案】分析:(1)先根據長方形高度之比計算出每一組的人數,從左到右第四組的人數即是第四組的頻數;
(2)第20位和第21位的平均數是中位數;
(3)34500÷捐款的平均數=該校捐款同學的人數
解答:解:(1)40÷(3+4+5+7+1)×7=14.

(2)第一組有6人,第二組有8人,第三組有10人,第五組有2人.第20個和第21個數都落在捐15元的這組內,則中位數為15元;
故填14;15.

(3)抽出的40名同學的平均數=(6×5+8×10+10×15+14×20+2×30)÷40=15
設該校捐款的同學有x人,由題意得15x≥34500
解得x≥2300
答:該校捐款的同學至少有2300人.
點評:本題考查讀頻數分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數.如果數據有奇數個,則正中間的數字即為所求;如果是偶數個,則找中間兩位數的平均數.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年全國中考數學試題匯編《四邊形》(07)(解析版) 題型:解答題

(2010•金華)已知點P的坐標為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數y=-的圖象上.小明對上述問題進行了探究,發(fā)現不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.
(1)如圖所示,若反比例函數解析式為y=-,P點坐標為(1,0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點M1的坐標;M1的坐標是______.
(2)請你通過改變P點坐標,對直線M1M的解析式y(tǒng)﹦kx+b進行探究可得k﹦______,若點P的坐標為(m,0)時,則b﹦______;
(3)依據(2)的規(guī)律,如果點P的坐標為(6,0),請你求出點M1和點M的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《四邊形》(07)(解析版) 題型:解答題

(2010•金華)如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
(1)過A,B兩點的直線解析式是______

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《平面直角坐標系》(02)(解析版) 題型:解答題

(2010•金華)如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
(1)過A,B兩點的直線解析式是______

查看答案和解析>>

科目:初中數學 來源:2010年浙江省金華市中考數學試卷(解析版) 題型:解答題

(2010•金華)如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
(1)過A,B兩點的直線解析式是______

查看答案和解析>>

科目:初中數學 來源:2010年浙江省金華市中考數學試卷(解析版) 題型:解答題

(2010•金華)已知點P的坐標為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數y=-的圖象上.小明對上述問題進行了探究,發(fā)現不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.
(1)如圖所示,若反比例函數解析式為y=-,P點坐標為(1,0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點M1的坐標;M1的坐標是______.
(2)請你通過改變P點坐標,對直線M1M的解析式y(tǒng)﹦kx+b進行探究可得k﹦______,若點P的坐標為(m,0)時,則b﹦______;
(3)依據(2)的規(guī)律,如果點P的坐標為(6,0),請你求出點M1和點M的坐標.

查看答案和解析>>

同步練習冊答案