如圖,四邊形ABCD是矩形,點E在線段CB的延長線上,連接DE交AB于點F,∠AED=2∠CED,點G是DF的中點.
(1)求證:∠CED=∠DAG;
(2)若BE=1,AG=4,求sin∠AEB的值.

(1)證明:∵矩形ABCD,
∴AD∥BC,
∴∠CED=∠ADE,
又∵點G是DF的中點,
∴AG=DG,
∴∠DAG=∠ADE,
∴∠CED=∠DAG;

(2)在△ADG中,∠AGE=∠ADG+∠DAG=2∠DAG,
又∵∠AED=2∠CED,
∴∠AED=∠AGE,
∴AE=AG,
∵AG=4,
∴AE=4,
在Rt△AEB中,由勾股定理可求AB===,
∴sin∠AEB==
分析:(1)根據(jù)矩形的對邊平行可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠CED=∠ADE,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AG=DG,然后根據(jù)等邊對等角求出∠DAG=∠ADE,從而得證;
(2)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式求出∠AGE=∠ADG+∠DAG=2∠DAG,然后求出∠AED=∠AGE,根據(jù)等角對等邊可得AE=AG,再利用勾股定理列式求出AB,然后根據(jù)銳角的正弦等于對邊比斜邊列式計算即可得解.
點評:本題考查了矩形的性質(zhì),平行線的性質(zhì),直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等角對等邊的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),以及銳角三角函數(shù)的定義,熟記各性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案