如圖,在平面直角坐標(biāo)系中,已知OA=12cm,OB=6cm,點(diǎn)P從O點(diǎn)開始沿OA邊向點(diǎn)A以1cm/s的速度移動(dòng):點(diǎn)Q從點(diǎn)B開始沿BO邊向點(diǎn)O以1cm/s的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(),那么:
(1)設(shè)△POQ的面積為,求關(guān)于的函數(shù)解析式。
(2)當(dāng)△POQ的面積最大時(shí),△ POQ沿直線PQ翻折后得到△PCQ,試判斷點(diǎn)C是否落在直線AB上,并說明理由。
(1)y=-t2+3t(0≤t≤6); (2) 點(diǎn)C不落在直線AB上.
【解析】
試題分析:(1)根據(jù)P、Q的速度,用時(shí)間t表示出OQ和OP的長,即可通過三角形的面積公式得出y,t的函數(shù)關(guān)系式;
(2)先根據(jù)(1)的函數(shù)式求出y最大時(shí),x的值,即可得出OQ和OP的長,然后求出C點(diǎn)的坐標(biāo)和直線AB的解析式,將C點(diǎn)坐標(biāo)代入直線AB的解析式中即可判斷出C是否在AB上;
試題解析:(1)∵OA=12,OB=6由題意,得BQ=1·t=t,OP=1·t=t
∴OQ=6-t
∴y=×OP×OQ=·t(6-t)=-t2+3t(0≤t≤6)
(2)∵
∴當(dāng)有最大值時(shí),
∴OQ=3 OP=3即△POQ是等腰直角三角形。
把△POQ沿翻折后,可得四邊形是正方形
∴點(diǎn)C的坐標(biāo)是(3,3)
∵
∴直線的解析式為當(dāng)時(shí),,
∴點(diǎn)C不落在直線AB上
考點(diǎn): 二次函數(shù)綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com