填空并完成以下證明: 已知,如圖,∠1=∠ACB,∠2=∠3,求證:∠BDC+∠DGF=180°. 證明:∵∠1=∠ACB(已知)
∴DE∥BC (                                                     
∴∠2=∠DCF (                                                   
∵∠2=∠3(已知)
∴∠3=∠DCF (                    
∴CD∥FG(                                                      
∴∠BDC+∠DGF=180°(                                                      ).
證明:∵∠1=∠ACB(已知),
∴DE∥BC (同位角相等,兩直線平行),
∴∠2=∠DCF (兩直線平行,內(nèi)錯角相等);
∵∠2=∠3(已知),
∴∠3=∠DCF (等量代換),
∴CD∥FG(同位角相等,兩直線平行),
∴∠BDC+∠DGF=180 °(兩直線平行,同旁內(nèi)角互補).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

38、填空并完成以下證明:
已知,如圖,∠1=∠ACB,∠2=∠3,F(xiàn)H⊥AB于H,
求證:CD⊥AB.
證明:∵∠1=∠ACB(已知)
∴DE∥BC
同位角相等,兩直線平行
,
∴∠2=
∠DCB

∵∠2=∠3(已知)
∴∠3=
∠DCB
,
∴CD∥FH(
同位角相等,兩直線平行

∴∠BDC=∠BHF(兩直線平行,同位角相等)
又∵FH⊥AB(
垂線的定義
)∴∠BHF=90°
∠BDC=90°
∴CD⊥AB.(
垂線的定義

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

28、填空并完成以下證明:
已知,如圖,∠1=∠ACB,∠2=∠3,求證:∠BDC+∠DGF=180°.
證明:∵∠1=∠ACB(已知)
∴DE∥BC (
同位角相等,兩直線平行

∴∠2=∠DCF (
兩直線平行,內(nèi)錯角相等

∵∠2=∠3(已知)
∴∠3=∠DCF (
等量代換

∴CD∥FG(
同位角相等,兩直線平行

∴∠BDC+∠DGF=180°(
兩直線平行,同旁內(nèi)角互補
).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

填空并完成以下證明:
已知,如圖,∠1=∠ACB,∠2=∠3,F(xiàn)H⊥AB于H,
求證:CD⊥AB.
證明:∵∠1=∠ACB(已知)
∴DE∥BC________,
∴∠2=________,
∵∠2=∠3(已知)
∴∠3=________,
∴CD∥FH(________)
∴∠BDC=∠BHF(兩直線平行,同位角相等)
又∵FH⊥AB(________)∴∠BHF=90°
∴________∴CD⊥AB.(________)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

填空并完成以下證明:
已知,如圖,∠1=∠ACB,∠2=∠3,F(xiàn)H⊥AB于H,
求證:CD⊥AB.
證明:∵∠1=∠ACB(已知)
∴DEBC______,
∴∠2=______,
∵∠2=∠3(已知)
∴∠3=______,
∴CDFH(______)
∴∠BDC=∠BHF(兩直線平行,同位角相等)
又∵FH⊥AB(______)∴∠BHF=90°
∴______∴CD⊥AB.(______)
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案