【題目】某中學(xué)九年級(jí)數(shù)學(xué)興趣小組想測量建筑物AB的高度.他們?cè)贑處仰望建筑物頂端,測得仰角為48°,再往建筑物的方向前進(jìn)6米到達(dá)D處,測得仰角為64°,求建筑物的高度.(測角器的高度忽略不計(jì),結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

【答案】解:根據(jù)題意,得∠ADB=64°,∠ACB=48°
在Rt△ADB中,tan64°= ,
則BD= AB,
在Rt△ACB中,tan48°= ,
則CB= AB,
∴CD=BC﹣BD
即6= AB﹣ AB
解得:AB= ≈14.7(米),
∴建筑物的高度約為14.7米.
【解析】本題考查解直角三角形的應(yīng)用﹣仰角俯角問題,解題的關(guān)鍵是利用數(shù)形結(jié)合的思想找出各邊之間的關(guān)系,然后找出所求問題需要的條件.Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根據(jù)CD=BC﹣BD可得關(guān)于AB 的方程,解方程可得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰三角形ABC中,AB=AC=4,BC=7.如圖2,在底邊BC上取一點(diǎn)D,連結(jié)AD,使得∠DAC=∠ACD.如圖3,將△ACD沿著AD所在直線折疊,使得點(diǎn)C落在點(diǎn)E處,連結(jié)BE,得到四邊形ABED.則BE的長是(

A.4
B.
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長交DC的延長線于點(diǎn)F.

(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個(gè)直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點(diǎn),連接EF.

(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=3SEDF , 求AE的長;
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;
②求EF的長;
(3)如圖③,若FE的延長線與BC的延長線交于點(diǎn)N,CN=1,CE= ,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長為1個(gè)單位長度的正方形).

(1)將△ABC沿x軸方向向左平移6個(gè)單位,畫出平移后得到的△A1B1C1
(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2 , 并直接寫出點(diǎn)B2、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點(diǎn),AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點(diǎn)P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人利用撲克牌玩“10點(diǎn)”游戲,游戲規(guī)則如下:
①將牌面數(shù)字作為“點(diǎn)數(shù)”,如紅桃6的“點(diǎn)數(shù)”就是6(牌面點(diǎn)數(shù)與牌的花色無關(guān));
②兩人摸牌結(jié)束時(shí),將所摸牌的“點(diǎn)數(shù)”相加,若“點(diǎn)數(shù)”之和小于或等于10,此時(shí)“點(diǎn)數(shù)”之和就是“最終點(diǎn)數(shù)”;若“點(diǎn)數(shù)”之和大于10,則“最終點(diǎn)數(shù)”是0;
③游戲結(jié)束前雙方均不知道對(duì)方“點(diǎn)數(shù)”;
④判定游戲結(jié)果的依據(jù)是:“最終點(diǎn)數(shù)”大的一方獲勝,“最終點(diǎn)數(shù)”相等時(shí)不分勝負(fù).
現(xiàn)甲、乙均各自摸了兩張牌,數(shù)字之和都是5,這時(shí)桌上還有四張背面朝上的撲克牌,牌面數(shù)字分別是4,5,6,7.

(1)若甲從桌上繼續(xù)摸一張撲克牌,乙不再摸牌,則甲獲勝的概率為;
(2)若甲先從桌上繼續(xù)摸一張撲克牌,接著乙從剩下的撲克牌中摸出一張牌,然后雙方不再摸牌.請(qǐng)用樹狀圖或表格表示出這次摸牌后所有可能的結(jié)果,再列表呈現(xiàn)甲、乙的“最終點(diǎn)數(shù)”,并求乙獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=6,O是AB的中點(diǎn),直線l經(jīng)過點(diǎn)O,∠1=120°,P是直線l上一點(diǎn),當(dāng)△APB為直角三角形時(shí),AP=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB和拋物線交于點(diǎn)A(﹣4,0),B(0,4),且點(diǎn)B是拋物線的頂點(diǎn).

(1)求直線AB和拋物線的解析式.
(2)點(diǎn)P是直線上方拋物線上的一點(diǎn),求當(dāng)△PAB面積最大時(shí)點(diǎn)P的坐標(biāo).
(3)M是直線AB上一動(dòng)點(diǎn),在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)N,使以O(shè)、B、M、N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案