【題目】如圖,已知ED為☉O的直徑且ED=4,點A(不與點E,D重合)為☉O上一個動點,線段AB經過點E,且EA=EB,F為☉O上一點,∠FEB=90°,BF的延長線交AD的延長線于點C.
(1)求證:△EFB≌△ADE;
(2)當點A在☉O上移動時,直接回答四邊形FCDE的最大面積為多少.
【答案】(1)證明見解析;(2)四邊形FCDE的最大面積是8.
【解析】
(1)連接FA,根據垂直的定義得到EF⊥AB,得到BF=AF,推出BF=ED,根據全等三角形的判定定理即可得到結論;
(2)根據全等三角形的性質得到∠B=∠AED,得到DE∥BC,推出四邊形形FCDE,得到E到BC的距離最大時,四邊形FCDE的面積最大,即點A到DE的距離最大,推出當A為的中點時,于是得到結論.
(1)連接FA,
∵∠FEB=90°,
∴EF⊥AB,
∵BE=AE,
∴BF=AF,
∵∠FEA=∠FEB=90°,
∴AF是☉O的直徑,
∴AF=DE,
∴BF=ED,
在Rt△EFB與Rt△ADE中,
∴Rt△EFB≌Rt△ADE.
(2)∵Rt△EFB≌Rt△ADE,
∴∠B=∠AED,
∴DE∥BC,
∵ED為☉O的直徑,
AC⊥AB,
∵EF⊥AB,
∴EF∥CD,
∴四邊形FCDE是平行四邊形,
∴E到BC的距離最大時,四邊形FCDE的面積最大,即點A到DE的距離最大,
∴當A為的中點時,點A到DE的距離最大是2,
∴四邊形FCDE的最大面積=4×2=8.
科目:初中數學 來源: 題型:
【題目】對于整式(其中m是大于的整數).
(1)若,且該整式是關于x的三次三項式,求m的值;
(2)若該整式是關于x的二次單項式,求m,n的值;
(3)若該整式是關于x的二次二項式,則m,n要滿足什么條件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖反映的過程是小明從家去食堂吃早餐,接著去圖書館讀報,然后回家,其中x表示時間,y表示小明離家的距離,小明家、食堂、圖書館在同一直線上,根據圖中提供的信息,下列說法正確的是( 。
A.食堂離小明家2.4km
B.小明在圖書館呆了20min
C.小明從圖書館回家的平均速度是0.04km/min
D.圖書館在小明家和食堂之間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如下表,方程1、方程2、方程3…是按照一定規(guī)律排列的一列方程。
(1)猜想方程1的解,并將它們的解填在表中的空白處。
序號 | 方程 | 方程的解() |
1 | =_________,=__________ | |
2 | ||
3 | ||
… | …… | …… |
(2)若方程的解是,猜想a,b的值。
(3)請寫出這列方程中的第n個方程和它的解。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠xOy=90°,線段AB=10,若點A在Oy上滑動,點B隨著線段AB在射線Ox上滑動(A,B與O不重合),Rt△AOB的內切圓☉K分別與OA,OB,AB切于點E,F,P.
(1)在上述變化過程中,Rt△AOB的周長,☉K的半徑,△AOB外接圓半徑,這幾個量中不會發(fā)生變化的是什么?并簡要說明理由.
(2)當AE=4時,求☉K的半徑r.
(3)當Rt△AOB的面積為S,AE為x,試求S與x之間的函數關系,并求出S最大時直角邊OA的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,關于x的二次函數y=ax2﹣2ax(a>0)的頂點為C,與x軸交于點O、A,關于x的一次函數y=﹣ax(a>0).
(1)試說明點C在一次函數的圖象上;
(2)若兩個點(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數的圖象上,是否存在整數k,滿足?如果存在,請求出k的值;如果不存在,請說明理由;
(3)若點E是二次函數圖象上一動點,E點的橫坐標是n,且﹣1≤n≤1,過點E作y軸的平行線,與一次函數圖象交于點F,當0<a≤2時,求線段EF的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,有一座拋物線形拱橋,橋下面在正常水位時,AB寬20 m,水位上升到警戒線CD時,CD到拱橋頂E的距離僅為1 m,這時水面寬度為10 m.
(1)在如圖所示的坐標系中求拋物線的解析式;
(2)若洪水到來時,水位以每小時0.3 m的速度上升,從正常水位開始,持續(xù)多少小時到達警戒線?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com