已知關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,試證明以a、b、c為三邊的三角形是直角三角形。
a(1-x2)+2bx+c(1+x2)=0去括號(hào),整理為一般形式為:(c-a)x2+2bx+a+c=0,
∵關(guān)于x的一元二次方程a(1-x2)+2bx+c(1+x2)=0有兩個(gè)相等的實(shí)數(shù)根。
∴△=0,即△=△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,
∴b2+c2-a2=0,即b2+c2=a2.
∴以a、b、c為三邊的三角形是直角三角形。
解析考點(diǎn):根的判別式;勾股定理的逆定理。
分析:先把方程變?yōu)橐话闶剑海╟-a)x2+2bx+a+c=0,由方程有兩個(gè)相等的實(shí)數(shù)根,得到△=0,即△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,則有b2+c2-a2=0,即b2+c2=a2,根據(jù)勾股定理的逆定理可以證明以a、b、c為三邊的三角形是直角三角形。
解答:
證明:∵a(1-x2)+2bx+c(1+x2)=0
去括號(hào),整理為一般形式為:(c-a)x2+2bx+a+c=0,
∵關(guān)于x的一元二次方程a(1-x2)+2bx+c(1+x2)=0有兩個(gè)相等的實(shí)數(shù)根。
∴△=0,即△=△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,
∴b2+c2-a2=0,即b2+c2=a2。
∴以a、b、c為三邊的三角形是直角三角形。
點(diǎn)評(píng):本題考查了一元二次方程的根的判別式和勾股定理的逆定理等知識(shí)。當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知關(guān)于x的方程有兩個(gè)不相等的實(shí)根為x1、x2,且滿(mǎn)足.則a的值是(。
A.-3 B.4 C.-3或4 D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市九年級(jí)第一次月考數(shù)學(xué)卷 題型:填空題
已知關(guān)于x的方程有兩個(gè)整數(shù)根,則整數(shù)m = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省宜興市九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
已知關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,試證明以a、b、c為三邊的三角形是直角三角形。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com