如圖,已知:反比例函數(shù)(x<0)的圖象經(jīng)過點A(-2,4)、B(m,2),過點A作AF⊥x軸于點F,過點B作BE⊥y軸于點E,交AF于點C,連接OA.
(1)求反比例函數(shù)的解析式及m的值;
(2)若直線l過點O且平分△AFO的面積,求直線l的解析式.

【答案】分析:(1)先把A(-2,4)代入y=可求出k=-8,則可確定反比例函數(shù)的解析式為y=-,然后把B點坐標代入即可求出m的值;
(2)根據(jù)A、B兩點坐標先求出C點坐標(-2,2),于是得到C點為AF的中點,則直線l過C點,然后利用待定系數(shù)法求出直線l的解析式.
解答:解:(1)把A(-2,4)代入y=得k=-2×4=-8,
∴反比例函數(shù)的解析式為y=-
把B(m,2)代入y=-得,2m=-8,解得m=-4;

(2)∵A點坐標為(-2,4)、B點坐標為(-4,2),
而AF⊥x軸,BE⊥y軸,
∴C點坐標為(-2,2),
∴C點為AF的中點,
∵直線l過點O且平分△AFO的面積,
∴直線l過C點,
設(shè)直線l的解析式為y=kx(k≠0),
把C(-2,2)代入y=kx得2=-2k,解得k=-1,
∴直線l的解析式為y=-x.
點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:反比例函數(shù)與一次函數(shù)的交點坐標滿足兩函數(shù)的解析式.也考查了待定系數(shù)法求函數(shù)的解析式.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
m
x
的圖象交于A、B兩點,根據(jù)圖象回答:當x為何值時,一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值?(  )
A、x<-2或0<x<4
B、-2<x<4
C、x>4或-2<x<0
D、x<-2或x>4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•資陽)如圖,已知點A(-4,2)、B( n,-4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
mx
圖象的兩個交點:
(1)求點B的坐標和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知反比例函數(shù)的圖象經(jīng)過點A,B,點A的坐標為(1,3),點B的縱坐標為1,點C的坐標為(2,0)
(1)求該反比例函數(shù)的解析式;
(2)求直線BC的解析式;
(3)當x為何值時,一次函數(shù)的函數(shù)值大于反比例函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知反比例函數(shù)y=
k1x
的圖象與一次函數(shù)y=k2x+b的圖象交于A、B兩點,A(2,n),B(-1,-2).
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOB的面積.
(3)利用圖象說明反比例函數(shù)值大于一次函數(shù)值時對應的x的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知一次函數(shù)y1=x+m(m為常數(shù))的圖象與反比例函數(shù) y2=
k
x
(k為常數(shù),k≠0)的圖象相交于點 A(1,3).
(1)求這兩個函數(shù)的解析式及其圖象的另一交點B的坐標;
(2)點C(a,b)在反比例函數(shù) y2=
k
x
的圖象上,求當1≤a≤3時,b的取值范圍;
(3)觀察圖象,寫出使函數(shù)值y1≥y2的自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案