(2005•陜西)如圖,PC切⊙O于點(diǎn)C,過(guò)圓心的割線(xiàn)PAB交⊙O于A、B兩點(diǎn),BE⊥PE,垂足為E,BE交⊙O于點(diǎn)D,F(xiàn)是PC上一點(diǎn),且PF=AF,F(xiàn)A的延長(zhǎng)線(xiàn)交⊙O于點(diǎn)G.求證:
(1)∠FGD=2∠PBC;
(2)

【答案】分析:(1)連接OC.易得OC⊥PC,則OC∥BE,可得∠POC=∠PBE.又∠PBE=∠FGD,∠POC=∠FGD.∠POC=2∠PBC,即得∠FGD=2∠PBC;
(2)連接BG,證明△PCO∽△AGB即可.
解答:證明:(1)連接OC.(1分)
∵PC切⊙O于點(diǎn)C,
∴OC⊥PC.
∵BE⊥PE,
∴OC∥BE.(2分)
∴∠POC=∠PBE.
又∵∠PBE=∠FGD,
∴∠POC=∠FGD.(3分)
∵∠POC=2∠PBC,
∴∠FGD=2∠PBC.(4分)

(2)連接BG.
∵AB是⊙O的直徑,
∴∠AGB=90°.
又∵OC⊥PC,
∴∠PCO=90°,∴∠AGB=∠PCO.(5分)
∵FP=FA,
∴∠FPA=∠PAF=∠BAG.(6分)
∴△PCO∽△AGB.(7分)
.(8分)
點(diǎn)評(píng):本題綜合考查了切線(xiàn)的性質(zhì)和相似三角形的性質(zhì)以及圓周角的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標(biāo)系中,⊙C過(guò)原點(diǎn)O,交x軸于點(diǎn)A(2,0),交y軸于點(diǎn)B(0,).
(1)求圓心的坐標(biāo);
(2)拋物線(xiàn)y=ax2+bx+c過(guò)O、A兩點(diǎn),且頂點(diǎn)在正比例函數(shù)y=-x的圖象上,求拋物線(xiàn)的解析式;
(3)過(guò)圓心C作平行于x軸的直線(xiàn)DE,交⊙C于D、E兩點(diǎn),試判斷D、E兩點(diǎn)是否在(2)中的拋物線(xiàn)上;
(4)若(2)中的拋物線(xiàn)上存在點(diǎn)P(x,y),滿(mǎn)足∠APB為鈍角,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標(biāo)系中,Rt△AOB的頂點(diǎn)坐標(biāo)分別為A(0,2),O(0,0),B(4,0),△AOB繞O點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△COD.
(1)求C、D兩點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)C、D、B三點(diǎn)的拋物線(xiàn)的解析式;
(3)設(shè)(2)中的拋物線(xiàn)的頂點(diǎn)為P,AB的中點(diǎn)為M,試判斷△PMB是鈍角三角形、直角三角形還是銳角三角形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年陜西省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標(biāo)系中,Rt△AOB的頂點(diǎn)坐標(biāo)分別為A(0,2),O(0,0),B(4,0),△AOB繞O點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△COD.
(1)求C、D兩點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)C、D、B三點(diǎn)的拋物線(xiàn)的解析式;
(3)設(shè)(2)中的拋物線(xiàn)的頂點(diǎn)為P,AB的中點(diǎn)為M,試判斷△PMB是鈍角三角形、直角三角形還是銳角三角形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年陜西省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標(biāo)系中,⊙C過(guò)原點(diǎn)O,交x軸于點(diǎn)A(2,0),交y軸于點(diǎn)B(0,).
(1)求圓心的坐標(biāo);
(2)拋物線(xiàn)y=ax2+bx+c過(guò)O、A兩點(diǎn),且頂點(diǎn)在正比例函數(shù)y=-x的圖象上,求拋物線(xiàn)的解析式;
(3)過(guò)圓心C作平行于x軸的直線(xiàn)DE,交⊙C于D、E兩點(diǎn),試判斷D、E兩點(diǎn)是否在(2)中的拋物線(xiàn)上;
(4)若(2)中的拋物線(xiàn)上存在點(diǎn)P(x,y),滿(mǎn)足∠APB為鈍角,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年陜西省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•陜西)如圖,直線(xiàn)CF垂直且平分AD于點(diǎn)E,四邊形ADCB是菱形,BA的延長(zhǎng)線(xiàn)交CF于點(diǎn)F,連接AC.
(1)圖中有幾對(duì)全等三角形,請(qǐng)把它們都寫(xiě)出來(lái);
(2)證明:△ABC是正三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案