如圖,平行四邊形ABCD中,AB=4,點D的坐標是(0,8),以點C為頂點的拋物線y=ax2+bx+c經過x軸上的點A,B.
(1)求點A,B,C的坐標;
(2)若拋物線向上平移后恰好經過點D,求平移后拋物線的解析式.
【答案】分析:(1)在平行四邊形ABCD中,根據(jù)平行四邊形的性質,CD∥AB且CD=AB=4,且C的縱坐標與D相同,
運用平行四邊形的性質,結合圖形得出;
(2)先根據(jù)題(1)求出拋物線的解析式,再在次拋物線基礎上平移,即拋物線的對稱軸不變.根據(jù)拋物線的性質特點,可設平移后拋物線的解析式為y=-2(x-4)2+8+k,平移后拋物線經過D點,將D(0,8)代入解析式,求出即可.
解答:解:(1)在平行四邊形ABCD中,CD∥AB且CD=AB=4,點D的坐標是(0,8),
∴點C的坐標為(4,8)(1分)
設拋物線的對稱軸與x軸相交于點H,
則AH=BH=2,(2分)
∴點A,B的坐標為A(2,0),B(6,0),C(4,8).

(2)由拋物線y=ax2+bx+c的頂點為C(4,8),
可設拋物線的解析式為y=a(x-4)2+8,(5分)
把A(2,0)代入上式,
解得a=-2.(6分)
設平移后拋物線的解析式為y=-2(x-4)2+8+k,
把(0,8)代入上式得k=32,(7分)
∴平移后拋物線的解析式為y=-2(x-4)2+40,(8分)
即y=-2x2+16x+8.
點評:考查二次函數(shù)頂點,對稱軸的性質,以及拋物線上下平移時的特征.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關于x的一元二精英家教網次方程x2-7x+12=0的兩個根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點,且S△AOE=
16
3
,求經過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標系內,則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點,AB=3,ED=1,則平行四邊形ABCD的周長是
14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC、BD相交于點O,將直線AC繞點O順時針旋轉一定角度后,分別交BC、AD于點E、F.
精英家教網
(1)試說明在旋轉過程中,線段AF與EC總保持相等;
(2)當旋轉角為90°時,在圖2中畫出直線AC旋轉后的位置并證明此時四邊形ABEF是平行四邊形;
(3)在直線AC旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉的度數(shù).(圖供畫圖或解釋時使用)
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,平行四邊形ABCD中,對角線AC和BD相交于點O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD的兩條對角線AC、BD相交于點O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長為
20
20

查看答案和解析>>

同步練習冊答案