【題目】小明爸爸叫木匠師傅做了一扇高為2 m,寬為1.5 m的門ABCD,但師傅安裝好門之后,他總覺得門安裝得不夠標準.根據(jù)經(jīng)驗一扇門安裝的是否標準,主要取決于∠ACB,若∠ACB是直角就標準,但手上只有一把夠長的卷尺.請你用所學知識去幫助小明爸爸驗證這扇門是否安裝的標準.

根據(jù)所學知識可知,還需量出線段 的長度.

若⑴中量出的線段長度為2.5 m,請你利用所學知識幫

小明爸爸判斷門安裝的是否標準?

【答案】(1)AB

(2)門安裝是標準的

【解析】

試題(1)根據(jù)勾股定理量出AB的長,根據(jù)勾股定理的逆定理即可判定∠ACB是否是直角;(2)分別計算AC2+BC2AB2的長,看是否相等,即可得結論.

試題解析:

(1)AB.

(2)∵AC=2、BC=1.5、AB=2.5

AC2+BC2=22+1.52=6.25

AB2=2.52=6.25

AC2+BC2=AB2

∴∠ACB=900

門安裝是標準的

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若代數(shù)式(4x2mx3y4)(8nx2x2y3)的值與字母x的取值無關,求代數(shù)式(m22mnn2)2(mn3m2)3(2n2mn)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,對角線ACBD相交于點O,過點O作直線EFBD,且交AC于點E,交BC于點F,連接BE、DF,且BE平分∠ABD.

1)①求證:四邊形BFDE是菱形;②求∠EBF的度數(shù).
2)把(1)中菱形BFDE進行分離研究,如圖2,G,I分別在BF,BE邊上,且BG=BI,連接GD,HGD的中點,連接FH,并延長FHED于點J,連接IJ,IHIF,IG.試探究線段IHFH之間滿足的數(shù)量關系,并說明理由;
3)把(1)中矩形ABCD進行特殊化探究,如圖3,矩形ABCD滿足AB=AD時,點E是對角線AC上一點,連接DE,作EFDE,垂足為點E,交AB于點F,連接DF,交AC于點G.請直接寫出線段AGGEEC三者之間滿足的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8筐白菜,以每筐25千克為標準,超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負數(shù),稱后

的紀錄如下:回答下列問題:

1)這8筐白菜中最接近標準重量的這筐白菜重 千克;

2)若這批白菜以2千克的價格出售,則這批白菜一共可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】城市發(fā)展 交通先行,成都市今年在中心城區(qū)啟動了緩堵保暢的二環(huán)路高架橋快速通道建設工程,建成后將大大提升二環(huán)路的通行能力.研究表明,某種情況下,高架橋上的車流速度V(單位:千米/時)是車流密度x(單位:輛/千米)的函數(shù),且當0<x28時,V=80;當28<x188時,V是x的一次函數(shù).函數(shù)關系如圖所示.

(1)求當28<x188時,V關于x的函數(shù)表達式;

(2)若車流速度V不低于50千米/時,求當車流密度x為多少時,車流量P(單位:輛/時)達到最大,并求出這一最大值.

(注:車流量是單位時間內通過觀測點的車輛數(shù),計算公式為:車流量=車流速度×車流密度)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,弦CDAB,垂足為H,連結AC,過上一點E作EGAC交CD的延長線于點G,連結AE交CD于點F,且EG=FG,連結CE.

(1)求證:ECF∽△GCE;

(2)求證:EG是O的切線;

(3)延長AB交GE的延長線于點M,若tanG=,AH=,求EM的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小亮從家步行到公交車站臺,等公交車去學校. 圖中的折線表示小亮的行程s(km)與所花時間t(min)之間的函數(shù)關系. 下列說法錯誤的是

A. 他離家8km共用了30min B. 他等公交車時間為6min

C. 他步行的速度是100m/min D. 公交車的速度是350m/min

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2﹣2x+ca0)與x軸、y軸分別交于點A,B,C三點,已知點A﹣20),點C0,﹣8),點D是拋物線的頂點.

1)求拋物線的解析式及頂點D的坐標;

2)如圖1,拋物線的對稱軸與x軸交于點E,第四象限的拋物線上有一點P,將△EBP沿直線EP折疊,使點B的對應點B'落在拋物線的對稱軸上,求點P的坐標;

3)如圖2,設BC交拋物線的對稱軸于點F,作直線CD,點M是直線CD上的動點,點N是平面內一點,當以點B,F,M,N為頂點的四邊形是菱形時,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A、B分別在xy軸上,點D在第一象限內,DCx軸于點C,AO=CD=2AB=DA=,反比例函數(shù)y=k0)的圖象過CD的中點E

(1)求k的值;

(2)BFG和△DCA關于某點成中心對稱,其中點Fy軸上,試判斷點G是否在反比例函數(shù)的圖象上,并說明理由.

查看答案和解析>>

同步練習冊答案