(2006•濟寧)如圖,已知李明的身高為1.8m,他在路燈下的影長為2m,李明距路燈桿底部為3m,則路燈燈泡距地面的高度為    m.
【答案】分析:根據(jù)題意,可將原題轉(zhuǎn)化如下圖所示的幾何模型,可得△ECD∽△EBA,利用相似三角形的相似比,列出方程,通過解方程求出路燈燈泡距地面的高度即可.
解答:解:如圖:∵CD∥AB,
∴△ECD∽△EBA,
∴CD:AB=CE:BE,
∴1.8:AB=2:5,
∴AB=4.5m.
答:路燈燈泡距地面的高度為4.5m.
點評:本題只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求出路燈燈泡距地面的高度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年浙江省寧波市北侖區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2006•濟寧)如圖,以O(shè)為原點的直角坐標(biāo)系中,A點的坐標(biāo)為(0,1),直線x=1交x軸于點B.P為線段AB上一動點,作直線PC⊥PO,交直線x=1于點C.過P點作直線MN平行于x軸,交y軸于點M,交直線x=1于點N.
(1)當(dāng)點C在第一象限時,求證:△OPM≌△PCN;
(2)當(dāng)點C在第一象限時,設(shè)AP長為m,四邊形POBC的面積為S,請求出S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)點P在線段AB上移動時,點C也隨之在直線x=1上移動,△PBC能否成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形的點P的坐標(biāo);如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年重慶市墊江實驗中學(xué)九年級(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•濟寧)如圖,以O(shè)為原點的直角坐標(biāo)系中,A點的坐標(biāo)為(0,1),直線x=1交x軸于點B.P為線段AB上一動點,作直線PC⊥PO,交直線x=1于點C.過P點作直線MN平行于x軸,交y軸于點M,交直線x=1于點N.
(1)當(dāng)點C在第一象限時,求證:△OPM≌△PCN;
(2)當(dāng)點C在第一象限時,設(shè)AP長為m,四邊形POBC的面積為S,請求出S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)點P在線段AB上移動時,點C也隨之在直線x=1上移動,△PBC能否成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形的點P的坐標(biāo);如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省溫州市中考數(shù)學(xué)模擬檢測(5)(解析版) 題型:解答題

(2006•濟寧)如圖,以O(shè)為原點的直角坐標(biāo)系中,A點的坐標(biāo)為(0,1),直線x=1交x軸于點B.P為線段AB上一動點,作直線PC⊥PO,交直線x=1于點C.過P點作直線MN平行于x軸,交y軸于點M,交直線x=1于點N.
(1)當(dāng)點C在第一象限時,求證:△OPM≌△PCN;
(2)當(dāng)點C在第一象限時,設(shè)AP長為m,四邊形POBC的面積為S,請求出S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)點P在線段AB上移動時,點C也隨之在直線x=1上移動,△PBC能否成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形的點P的坐標(biāo);如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省蘇州市張家港市中考數(shù)學(xué)模擬練習(xí)試卷(3)(解析版) 題型:解答題

(2006•濟寧)如圖,以O(shè)為原點的直角坐標(biāo)系中,A點的坐標(biāo)為(0,1),直線x=1交x軸于點B.P為線段AB上一動點,作直線PC⊥PO,交直線x=1于點C.過P點作直線MN平行于x軸,交y軸于點M,交直線x=1于點N.
(1)當(dāng)點C在第一象限時,求證:△OPM≌△PCN;
(2)當(dāng)點C在第一象限時,設(shè)AP長為m,四邊形POBC的面積為S,請求出S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)點P在線段AB上移動時,點C也隨之在直線x=1上移動,△PBC能否成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形的點P的坐標(biāo);如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省濟寧市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•濟寧)如圖,以O(shè)為原點的直角坐標(biāo)系中,A點的坐標(biāo)為(0,1),直線x=1交x軸于點B.P為線段AB上一動點,作直線PC⊥PO,交直線x=1于點C.過P點作直線MN平行于x軸,交y軸于點M,交直線x=1于點N.
(1)當(dāng)點C在第一象限時,求證:△OPM≌△PCN;
(2)當(dāng)點C在第一象限時,設(shè)AP長為m,四邊形POBC的面積為S,請求出S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)點P在線段AB上移動時,點C也隨之在直線x=1上移動,△PBC能否成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形的點P的坐標(biāo);如果不可能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案