如圖,點A1,A2,A3,A4,…,An在射線OA上,點B1,B2,B3,…,Bn―1在射線OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1為陰影三角形,若△A2B1B2,△A3B2B3的面積分別為1、4,則△A1A2B1的面積為__________;面積小于2014的陰影三角形共有__________個.
;6.
解析試題分析:根據(jù)面積比等于相似比的平方,可得出,,再由平行線的性質可得出,,從而可推出相鄰兩個陰影部分的相似比為1:2,面積比為1:4,先利用等底三角形的面積之比等于高之比可求出第一個及第二個陰影部分的面積,再由相似比為1:2可求出面積小于2011的陰影部分的個數(shù).
試題解析:由題意得,△A2B1B2∽△A3B2B3,
∴,,
又∵A1B1∥A2B2∥A3B3,
∴,,
∴OA1=A1A2,B1B2=B2B3
繼而可得出規(guī)律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…
又△A2B1B2,△A3B2B3的面積分別為1、4,
∴S△A1B1A2=,S△A2B2A3=2,繼而可推出S△A3B3A4=8,S△A,4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,
故可得小于2014的陰影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6個.
考點: 1.相似三角形的判定與性質;2.平行線的性質;3.三角形的面積.
科目:初中數(shù)學 來源: 題型:填空題
如圖,在四邊形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于點E,在BC上截取BF=AE,連接AF交CE于點G,連接DG交AC于點H,過點A作AN⊥BC,垂足為N,AN交CE于點M.則下列結論;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正確的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
如圖,已知△ABC是面積為的等邊三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC與DE相交于點F,則△AEF的面積等于 (結果保留根號)..
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
在△中,分別是邊上的點,是邊的等分點,,.如圖1,若,,則∠+∠+∠+ +∠ 度;如圖2,若,,則∠+∠+∠+ +∠ (用含,的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:單選題
如圖,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC內依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.則EF等于
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com