【題目】已知中,,,CDAB邊上中線,ECB邊上的一個(gè)動(dòng)點(diǎn).

CD的長(zhǎng);

如圖1,連接AE,交CD于點(diǎn)F,當(dāng)AE平分時(shí),求CECF的長(zhǎng);

如圖2,連接DE,將沿DE翻折至,連接BG,直接寫出間的數(shù)量關(guān)系.

【答案】(1)5;(2);(3)DGAB的下方,DGAB的上方:.

【解析】

先判斷三角形是直角三角形,再根據(jù)斜邊上的中線等于斜邊的一半可求CD的長(zhǎng)

,根據(jù)角平分線的性質(zhì)可以得,再根據(jù)面積法可以求CE的長(zhǎng),取AE中點(diǎn)N,根據(jù)中位線定理得,再根據(jù)平行線分線段成比例,可得,代入可得CF的長(zhǎng).

要分類討論,DGAB上方或下方通過(guò)翻折可得,且因?yàn)?/span>,所以可得,所以D,E,G,B,四點(diǎn)共圓,然后可求數(shù)量關(guān)系.

解:,

,

是直角三角形,,

是斜邊AB上的中線,

如圖1:過(guò)點(diǎn)E于點(diǎn)M,

平分,

,

,

AE中點(diǎn)N,連接DN

AB中點(diǎn),NAE中點(diǎn),

,且

,

,

DGAB的下方,如圖2

<>

.

翻折得到,

,

,

,E,G,B四點(diǎn)共圓,

,

,

DGAB的上方:如備用圖,

,

,

翻折得到,

,

,

,E,G,B四點(diǎn)共圓,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2-2x+1=0.

(1)若方程有兩個(gè)實(shí)數(shù)根,求m的取值范圍;

(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且x1x2-x1-x2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx-3a經(jīng)過(guò)A(-1,0),C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.

(1)求此拋物線的表達(dá)式;

(2)已知點(diǎn)D(m,-m-1)在第四象限的拋物線上,求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)D′的坐標(biāo);

(3)在(2)的條件下,連接BD.問(wèn)在x軸上是否存在點(diǎn)P,使∠PCB=∠CBD?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是△ABC的兩條角平分線的交點(diǎn),若∠BOC=110°,則∠A______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AC是⊙O的直徑,B為⊙O上一點(diǎn),D為的中點(diǎn),過(guò)D作EF∥BC交AB的延長(zhǎng)線于點(diǎn)E,交AC的延長(zhǎng)線于點(diǎn)F.

(Ⅰ)求證:EF為⊙O的切線;

(Ⅱ)若AB=2,∠BDC=2∠A,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,ACBAD的角平分線.

1)求證:ABC≌△ADC

2)若BCD60°,AC=BC,求ADB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,經(jīng)過(guò)原點(diǎn)O的拋物線x軸交于另一點(diǎn),在第一象限內(nèi)與直線交于點(diǎn)

求這條拋物線的表達(dá)式;

在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);

如圖2,若點(diǎn)M在這條拋物線上,且,

求點(diǎn)M的坐標(biāo);

的條件下,是否存在點(diǎn)P,使得?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】暑假期間,兩位家長(zhǎng)計(jì)劃帶領(lǐng)若干名學(xué)生去旅游,他們聯(lián)系了報(bào)價(jià)均為每人400元的兩家旅行社.經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩位家長(zhǎng)全額收費(fèi),學(xué)生都按七折收費(fèi);乙旅行社的優(yōu)惠條件是:家長(zhǎng)、學(xué)生都按八折收費(fèi)假設(shè)這兩位家長(zhǎng)帶領(lǐng)x名學(xué)生去旅游.

1)如果設(shè)選擇甲旅行社所用的費(fèi)用為元,選擇乙旅行社所用的費(fèi)用為.請(qǐng)寫出、x的關(guān)系式.

2)在(1)的前提下,請(qǐng)你幫助兩位家長(zhǎng)根據(jù)所帶學(xué)生人數(shù),選擇哪家旅行社合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C90°,∠B30°,以A為圓心,任意長(zhǎng)為半徑畫弧分別交AB、AC于點(diǎn)MN,再分別以M,N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列結(jié)論中正確的個(gè)數(shù)是( 。

AD是∠BAC的平分線;②∠ADC60°;③ADBD;④點(diǎn)DAB的垂直平分線上⑤SABDSACD

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案