【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>分,滿分為100分,規(guī)定:級(jí),級(jí),級(jí),級(jí).現(xiàn)隨機(jī)抽取某中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問題:

1)在這次調(diào)查中,一共抽取了__________名學(xué)生;

2)扇形統(tǒng)計(jì)圖中,________%,級(jí)對(duì)應(yīng)的圓心角為______度;

3)若該中學(xué)共有學(xué)生1200名,請(qǐng)你利用你所學(xué)的統(tǒng)計(jì)知識(shí),估計(jì)綜合評(píng)定成績(jī)?yōu)?/span>級(jí)的學(xué)生有多少名?

【答案】150;(224,72;(3)估計(jì)綜合評(píng)定成績(jī)?yōu)?/span>級(jí)的學(xué)生有96名.

【解析】

1)由圖可知B級(jí)的人數(shù)為24人,所占的百分比為,B級(jí)的人數(shù)B級(jí)所占百分比=一共抽取的學(xué)生人數(shù);(2)根據(jù)A級(jí)所占百分比=A級(jí)人數(shù)抽查的學(xué)生總數(shù),代數(shù)求解即可,C級(jí)人數(shù)等于抽查的學(xué)生總數(shù)減去A,B,D級(jí)的人數(shù),同樣,計(jì)算出C級(jí)所占百分比,再乘以即為它所對(duì)的圓心角度數(shù);(3)先求出D級(jí)所占百分比,再用共有的學(xué)生總數(shù)乘以百分比即可.

解:(1(名)

故答案為:50

2

C級(jí)人數(shù),

故答案為:2472

3 (名)

答:估計(jì)綜合評(píng)定成績(jī)?yōu)?/span>級(jí)的學(xué)生有96名.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知DEBC,CD是∠ACB的平分線,∠ADE70°,∠ACB40°,求∠EDC和∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x1,x2是關(guān)于x的一元二次方程x22(m1)xm250的兩實(shí)根.

(1)(x11)(x21)28,求m的值;

(2)已知等腰△ABC的一邊長(zhǎng)為7,若x1,x2恰好是△ABC另外兩邊的邊長(zhǎng),求這個(gè)三角形的周長(zhǎng).

【答案】(1)m的值為6;(2)17.

【解析】試題分析

1)由題意和根與系數(shù)的關(guān)系可得:x1x22(m1),x1x2m25;(x11)(x21)28,可得x1x2(x1x2)27;從而得到m252(m1)27,解方程求得m的值,再由“一元二次方程根的判別式”進(jìn)行檢驗(yàn)即可得到m的值;

2當(dāng)7為腰長(zhǎng)時(shí),則方程的兩根中有一根為7,代入方程可解得m的值(此時(shí)m的取值需滿足根的判別式 ),將m的值代入原方程,可求得兩根(此時(shí)兩根和7需滿足三角形三邊之間的關(guān)系),從而可求得等腰三角形的周長(zhǎng);

當(dāng)7為底邊時(shí),則方程的兩根相等,由此可得“根的判別式△=0”,從而可得關(guān)于m的方程,解方程求得m的值,代入原方程可求得方程的兩根,再由三角形三邊之間的關(guān)系檢驗(yàn)即可.

試題解析

(1)(x11)(x21)28,即x1x2(x1x2)27,而x1x22(m1)x1x2m25,

∴m252(m1)27,

解得m16,m2=-4

又Δ=[2(m1)]24×1×(m25)≥0時(shí),m≥2,

∴m的值為6; 

(2) 7為腰長(zhǎng),則方程x22(m1)xm250的一根為7,

722×7×(m1)m250,

解得m110,m24,

當(dāng)m10時(shí),方程x222x1050,根為x115,x27,不符合題意,舍去.

當(dāng)m4時(shí),方程為x210x210,根為x13,x27,此時(shí)周長(zhǎng)為77317 

7為底邊,則方程x22(m1)xm250有兩等根,

∴Δ0,解得m2,此時(shí)方程為x26x90,根為x13,x23,33<7,不成立,

綜上所述,三角形周長(zhǎng)為17

點(diǎn)睛:(1)一元二次方程根與系數(shù)的關(guān)系成立的前提條件是方程要有實(shí)數(shù)根,即“根的判別式△ ”;(2)涉及三角形邊長(zhǎng)的問題中,解得的結(jié)果都需要用“三角形三邊之間的關(guān)系”檢驗(yàn),看三條線段能否圍成三角形.

型】解答
結(jié)束】
21

【題目】如圖,已知在△ABC中,DAB的中點(diǎn),且∠ACD=∠B,若 AB=10,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是等腰直角△ABC外一點(diǎn),把BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )

A. 1∶ B. 1∶2 C. ∶2 D. 1∶

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在讀書月活動(dòng)中,學(xué)校準(zhǔn)備購(gòu)買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根

據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   名同學(xué);

(2)條形統(tǒng)計(jì)圖中,m=   ,n=   ;

(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類讀物所在扇形的圓心角是   度;

(4)學(xué)校計(jì)劃購(gòu)買課外讀物6000冊(cè),請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)學(xué)校購(gòu)買其他類讀物多少冊(cè)比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱軸為直線.下列結(jié)論中,正確的是( 。

A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

數(shù)學(xué)課上,老師讓同學(xué)們利用三角形紙片進(jìn)行操作活動(dòng),探究有關(guān)線段之間的關(guān)系.

問題情境:

如圖1,三角形紙片ABC中,∠ACB90°,ACBC.將點(diǎn)C放在直線l上,點(diǎn)AB位于直線l的同側(cè),過點(diǎn)AADl于點(diǎn)D.

初步探究:

(1)在圖1的直線l上取點(diǎn)E,使BEBC,得到圖2.猜想線段CEAD的數(shù)量關(guān)系,并說明理由;

變式拓展:

(2)小穎又拿了一張三角形紙片MPN繼續(xù)進(jìn)行拼圖操作,其中∠MPN90°,MPNP.小穎在圖 1 的基礎(chǔ)上,將三角形紙片MPN的頂點(diǎn)P放在直線l上,點(diǎn)M與點(diǎn)B重合,過點(diǎn)NNHl于點(diǎn) H.

請(qǐng)從下面 A,B 兩題中任選一題作答,我選擇_____.

A.如圖3,當(dāng)點(diǎn)N與點(diǎn)M在直線l的異側(cè)時(shí),探究此時(shí)線段CPADNH之間的數(shù)量關(guān)系,并說明理由.

B.如圖4,當(dāng)點(diǎn)N與點(diǎn)M在直線l的同側(cè),且點(diǎn)P在線段CD的中點(diǎn)時(shí),探究此時(shí)線段CD,AD,NH之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,AD BC 邊上的高,且∠ACB=∠BAD,AE 平分∠CAD,交 BC于點(diǎn) E,過點(diǎn) E EFAC,分別交 AB、AD 于點(diǎn) F、G.則下列結(jié)論:①∠BAC90°;②∠AEF=∠BEF; ③∠BAE=∠BEA; ④∠B2AEF,其中正確的有( )

A. 4 個(gè)B. 3 個(gè)C. 2 個(gè)D. 1 個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案