【題目】如圖,點BF、CE在一條直線上,ACDF,BFCE,那么添加下列一個條件后,仍無法判斷△ABC≌△DEF的是( 。

A. A=∠D=90° B. BCA=∠EFD C. B=∠E D. ABDE

【答案】C

【解析】

全等三角形的判定中若已知兩邊對應相等,則找它們的夾角或第三邊;若已知兩角對應相等則必須再找一組對邊對應相等,且要是兩角的夾邊,若已知一邊一角則找另一組角,或找這個角的另一組對應鄰邊

BF=CE,∴BC=EF

A.當∠A=D=90°,AC=DF,BC=EF,依據(jù)HL可得△ABC≌△DEF;

B.當∠BCA=EFD,AC=DFBC=EF ,依據(jù)SAS可得△ABC≌△DEF;

C.當∠B=E,AC=DF,BC=EF,不能得出△ABC≌△DEF;

D.AB=DE,AC=DF,BC=EF ,依據(jù)SSS可得△ABC≌△DEF

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果一個分式的分子或分母可以因式分解,且這個分式不可約分,那么我們稱這

個分式為和諧分式”.

1)下列分式:;;. 其中是和諧分式 (填寫序號即可)

2)若為正整數(shù),且和諧分式,請寫出的值;

3)在化簡時,

小東和小強分別進行了如下三步變形:

小東:

小強:

顯然,小強利用了其中的和諧分式, 第三步所得結(jié)果比小東的結(jié)果簡單,

原因是: ,

請你接著小強的方法完成化簡.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解全校3000名學生對學校設置的體操、球類、跑步、踢毽子等課外體育活動項目的喜愛情況,在全校范圍內(nèi)隨機抽取了若干名學生.對他們最喜愛的體育項目(每人只選一項)進行了問卷調(diào)查,將數(shù)據(jù)進行了統(tǒng)計并繪制成了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).

1)在這次問卷調(diào)查中,一共抽查了多少名學生?

2)補全條形統(tǒng)計圖;

3)求球類所對應的扇形的圓心角度數(shù);

4)估計該校3000名學生中有多少人最喜愛球類活動?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,平行四邊形OABC的頂點A,B的坐標分別為(6,0),(7,3),將平行四邊形OABC繞點O逆時針方向旋轉(zhuǎn)得到平行四邊形OA′B′C′,當點C′落在BC的延長線上時,線段OA′交BC于點E,則線段C′E的長度為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店用 500 元購進 AB 兩種鉛筆盒共 50 個,這兩種鉛筆盒的進價、標價如下表所示.

類型

價格

A

B

進價(元/個)

8

13

標價(元/個)

12

20

1這兩種筆記本各購進多少個?

2 A 型筆記本按標價的 9 折出售,B 型筆記本按標價的 8 折出售,那么這批筆記本 全部售出后,商店共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,曲線l是由函數(shù)y= 在第一象限內(nèi)的圖象繞坐標原點O逆時針旋轉(zhuǎn)45°得到的,過點A(﹣4 ,4 ),B(2 ,2 )的直線與曲線l相交于點M、N,則△OMN的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩工程隊承包一項工程,如果甲工程隊單獨施工,恰好如期完成;如果乙工程隊單獨施工就要超過6個月才能完成,現(xiàn)在甲、乙兩隊先共同施工4個月,剩下的由乙隊單獨施工,則恰好如期完成.

(1)問原來規(guī)定修好這條公路需多少長時間?

(2)現(xiàn)要求甲、乙兩個工程隊都參加這項工程,但由于受到施工場地條件限制,甲、乙兩工程隊不能同時施工.已知甲工程隊每月的施工費用為4萬元,乙工程隊每月的施工費用為2萬元.為了結(jié)算方便,要求:甲、乙的施工時間為整數(shù)個月,不超過15個月完成.當施工費用最低時,甲、乙各施工了多少個月?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在四邊形ABCD中,對角線AC、BD相交于點E,且ACBD,作BFCD,垂足為點F,BFAC交于點C,BGE=ADE.

(1)如圖1,求證:AD=CD;

(2)如圖2,BHABE的中線,若AE=2DE,DE=EG,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于ADE面積的2倍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°.

(1)用圓規(guī)和直尺在AC上作點P,使點PA、B的距離相等.(保留作圖痕跡,不寫作法和證明)

(2)當滿足(1)的點PAB、BC的距離相等時,求∠A的度數(shù).

查看答案和解析>>

同步練習冊答案