精英家教網 > 初中數學 > 題目詳情
在反比例函數中,當x>0時,y隨x的增大而增大,則二次函數y=m x2+m x的圖象大致是下圖中的
A.B.C.D.
A

試題分析:∵反比例函數中,當x>0時,y隨x的增大而增大,∴m<0。
∴二次函數y=m x2+m x的圖象開口向下。
又∵二次函數y=m x2+m x的圖象的對稱軸x=
∴符合上述條件的是選項A。故選A。
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0)。

(1)求點B的坐標;
(2)已知,C為拋物線與y軸的交點。
①若點P在拋物線上,且,求點P的坐標;
②設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知:如圖①,直線與x軸、y軸分別交于A、B兩點,兩動點D、E分別從A、B兩點同時出發(fā)向O點運動(運動到O點停止);對稱軸過點A且頂點為M的拋物線(a<0)始終經過點E,過E作EG∥OA交拋物線于點G,交AB于點F,連結DE、DF、AG、BG.設D、E的運動速度分別是1個單位長度/秒和個單位長度/秒,運動時間為t秒.

(1)用含t代數式分別表示BF、EF、AF的長;
(2)當t為何值時,四邊形ADEF是菱形?判斷此時△AFG與△AGB是否相似,并說明理由;
(3)當△ADF是直角三角形,且拋物線的頂點M恰好在BG上時,求拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c交y軸于點C(0,4),對稱軸x=2與x軸交于點D,頂點為M,且DM=OC+OD.

(1)求該拋物線的解析式;
(2)設點P(x,y)是第一象限內該拋物線上的一個動點,△PCD的面積為S,求S關于x的函數關系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,若經過點P的直線PE與y軸交于點E,是否存在以O、P、E為頂點的三角形與△OPD全等?若存在,請求出直線PE的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,拋物線經過點A(,0)和點B(1,),與x軸的另一個交點為C.
(1)求拋物線的函數表達式;
(2)點D在對稱軸的右側,x軸上方的拋物線上,且∠BDA=∠DAC,求點D的坐標;
(3)在(2)的條件下,連接BD,交拋物線對稱軸于點E,連接AE.
①判斷四邊形OAEB的形狀,并說明理由;
②點F是OB的中點,點M是直線BD的一個動點,且點M與點B不重合,當∠BMF=∠MFO時,請直接寫出線段BM的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線經過點A(3,0),B(﹣1,0).
(1)求拋物線的解析式;
(2)求拋物線的頂點坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

(2013年四川綿陽4分)二次函數y=ax2+bx+c的圖象如圖所示,給出下列結論:
①2a+b>0;②b>a>c;③若﹣1<m<n<1,則m+n<;④3|a|+|c|<2|b|.
其中正確的結論是   (寫出你認為正確的所有結論序號).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

若二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列選項正確的是
A.a>0B.c>0C.ac>0D.bc<0

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法錯誤的是
A.圖象關于直線x=1對稱
B.函數ax2+bx+c(a≠0)的最小值是﹣4
C.﹣1和3是方程ax2+bx+c(a≠0)的兩個根
D.當x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案