如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線(xiàn)經(jīng)過(guò)點(diǎn)A、B、C.

(1)求拋物線(xiàn)的解析式;

(2)若點(diǎn)P是第二象限內(nèi)拋物線(xiàn)上的動(dòng)點(diǎn),其坐標(biāo)為t,

①設(shè)拋物線(xiàn)對(duì)稱(chēng)軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時(shí),點(diǎn)P的坐標(biāo);

②是否存在一點(diǎn)P,使△PCD得面積最大?若存在,求出△PCD的面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

(1)

(2)①P點(diǎn)的坐標(biāo)為:(﹣1,4)或(﹣2,3)。

②當(dāng)t=﹣時(shí),SPCD的最大值為

【解析】

分析:(1)先求出A、B、C的坐標(biāo),再運(yùn)用待定系數(shù)法就可以直接求出二次函數(shù)的解析式。

(2)①由(1)的解析式可以求出拋物線(xiàn)的對(duì)稱(chēng)軸,分類(lèi)討論當(dāng)∠CEF=90°時(shí),當(dāng)∠CFE=90°時(shí),根據(jù)相似三角形的性質(zhì)就可以求出P點(diǎn)的坐標(biāo)。

②先運(yùn)用待定系數(shù)法求出直線(xiàn)CD的解析式,設(shè)PM與CD的交點(diǎn)為N,根據(jù)CD的解析式表示出點(diǎn)N的坐標(biāo),再根據(jù)SPCD=SPCN+SPDN就可以表示出三角形PCD的面積,運(yùn)用頂點(diǎn)式就可以求出結(jié)論。

解:(1)在Rt△AOB中,OA=1,,∴OB=3OA=3.。

∵△DOC是由△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°而得到的,

∴△DOC≌△AOB!郞C=OB=3,OD=OA=1。

∴A、B、C的坐標(biāo)分別為(1,0),(0,3)(﹣3,0).

代入解析式得,解得:。

∴拋物線(xiàn)的解析式為。

(2)①∵,∴對(duì)稱(chēng)軸l為x=﹣1。

∴E點(diǎn)的坐標(biāo)為(﹣1,0)。

當(dāng)∠CEF=90°時(shí),△CEF∽△COD.此時(shí)點(diǎn)P在對(duì)稱(chēng)軸上,即點(diǎn)P為拋物線(xiàn)的頂點(diǎn),P(﹣1,4)。

當(dāng)∠CFE=90°時(shí),△CFE∽△COD,過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,則△EFC∽△EMP。

。∴MP=3EM.。

∵P的橫坐標(biāo)為t,∴P(t,)。

∵P在二象限,∴PM=,EM=,

,解得:t1=﹣2,t2=﹣3(與C重合,舍去)。

∴t=﹣2時(shí),。

∴P(﹣2,3)。

綜上所述,當(dāng)△CEF與△COD相似時(shí),P點(diǎn)的坐標(biāo)為:(﹣1,4)或(﹣2,3)。

②設(shè)直線(xiàn)CD的解析式為y=kx+b,由題意,得

,解得:。

∴直線(xiàn)CD的解析式為:y=x+1。

設(shè)PM與CD的交點(diǎn)為N,則點(diǎn)N的坐標(biāo)為(t,t+1),∴NM=t+1。

。

∵SPCD=SPCN+SPDN,

∴當(dāng)t=﹣時(shí),SPCD的最大值為。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段OP′.
(1)在圖中畫(huà)出線(xiàn)段OP′;
(2)求P′的坐標(biāo)和
PP′
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過(guò)第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過(guò)點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線(xiàn)AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫(huà)出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿(mǎn)足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案