如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線(xiàn)經(jīng)過(guò)點(diǎn)A、B、C.
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線(xiàn)上的動(dòng)點(diǎn),其坐標(biāo)為t,
①設(shè)拋物線(xiàn)對(duì)稱(chēng)軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時(shí),點(diǎn)P的坐標(biāo);
②是否存在一點(diǎn)P,使△PCD得面積最大?若存在,求出△PCD的面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
(1)
(2)①P點(diǎn)的坐標(biāo)為:(﹣1,4)或(﹣2,3)。
②當(dāng)t=﹣時(shí),S△PCD的最大值為。
【解析】
分析:(1)先求出A、B、C的坐標(biāo),再運(yùn)用待定系數(shù)法就可以直接求出二次函數(shù)的解析式。
(2)①由(1)的解析式可以求出拋物線(xiàn)的對(duì)稱(chēng)軸,分類(lèi)討論當(dāng)∠CEF=90°時(shí),當(dāng)∠CFE=90°時(shí),根據(jù)相似三角形的性質(zhì)就可以求出P點(diǎn)的坐標(biāo)。
②先運(yùn)用待定系數(shù)法求出直線(xiàn)CD的解析式,設(shè)PM與CD的交點(diǎn)為N,根據(jù)CD的解析式表示出點(diǎn)N的坐標(biāo),再根據(jù)S△PCD=S△PCN+S△PDN就可以表示出三角形PCD的面積,運(yùn)用頂點(diǎn)式就可以求出結(jié)論。
解:(1)在Rt△AOB中,OA=1,,∴OB=3OA=3.。
∵△DOC是由△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°而得到的,
∴△DOC≌△AOB!郞C=OB=3,OD=OA=1。
∴A、B、C的坐標(biāo)分別為(1,0),(0,3)(﹣3,0).
代入解析式得,解得:。
∴拋物線(xiàn)的解析式為。
(2)①∵,∴對(duì)稱(chēng)軸l為x=﹣1。
∴E點(diǎn)的坐標(biāo)為(﹣1,0)。
當(dāng)∠CEF=90°時(shí),△CEF∽△COD.此時(shí)點(diǎn)P在對(duì)稱(chēng)軸上,即點(diǎn)P為拋物線(xiàn)的頂點(diǎn),P(﹣1,4)。
當(dāng)∠CFE=90°時(shí),△CFE∽△COD,過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,則△EFC∽△EMP。
∴。∴MP=3EM.。
∵P的橫坐標(biāo)為t,∴P(t,)。
∵P在二象限,∴PM=,EM=,
∴,解得:t1=﹣2,t2=﹣3(與C重合,舍去)。
∴t=﹣2時(shí),。
∴P(﹣2,3)。
綜上所述,當(dāng)△CEF與△COD相似時(shí),P點(diǎn)的坐標(biāo)為:(﹣1,4)或(﹣2,3)。
②設(shè)直線(xiàn)CD的解析式為y=kx+b,由題意,得
,解得:。
∴直線(xiàn)CD的解析式為:y=x+1。
設(shè)PM與CD的交點(diǎn)為N,則點(diǎn)N的坐標(biāo)為(t,t+1),∴NM=t+1。
∴。
∵S△PCD=S△PCN+S△PDN,
∴。
∴當(dāng)t=﹣時(shí),S△PCD的最大值為。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
PP′ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
6 |
x |
3 |
2 |
6 |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com