作業(yè)寶如圖,已知AB、CD分別表示兩幢相距30米的大樓,小明在大樓底部點(diǎn)B處觀察,當(dāng)仰角增大到30度時(shí),恰好能通過大樓CD的玻璃幕墻看到大樓AB的頂部點(diǎn)A的像,那么大樓AB的高度為


  1. A.
    數(shù)學(xué)公式
  2. B.
    20數(shù)學(xué)公式
  3. C.
    30數(shù)學(xué)公式
  4. D.
    60米
B
分析:根據(jù)仰角為30°,BD=30米,在Rt△BDE中,可求得ED的長度,根據(jù)題意恰好能通過大樓CD的玻璃幕墻看到大樓AB的頂部點(diǎn)A的像,可得AB=2ED.
解答:在Rt△BDE中,
∵∠EBD=30°,BD=30米,
=tan30°,
解得:ED=10(米),
∵當(dāng)仰角增大到30度時(shí),恰好能通過大樓CD的玻璃幕墻看到大樓AB的頂部點(diǎn)A的像,
∴AB=2DE=20(米).
故選B.
點(diǎn)評:本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是根據(jù)仰角構(gòu)造直角三角形,利用三角函數(shù)的知識解直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB、CD是⊙O的兩條平行弦,過A點(diǎn)的⊙O的切線AE和DC的延長線交于E點(diǎn),P為弧
CD
上一點(diǎn),弦AP、BP與CD分別交于點(diǎn)M、N.
求證:CM:EM=NM:DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

32、如圖,已知AB、CD相交于點(diǎn)O,OB平分∠DOE,若∠DOB=30°,求∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,已知AB=BC=CD=AD,∠DAC=40°,那么∠B=
100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB,CD相交于點(diǎn)0,△ACO≌△BD0,CE∥DF,求證:CE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB、CD相交于點(diǎn)O,OE⊥AB,∠EOC=28°,則∠AOD=
62
62
度.

查看答案和解析>>

同步練習(xí)冊答案