精英家教網(wǎng)勾股定理揭示了直角三角形三邊之間的關(guān)系,其中蘊含著豐富的科學(xué)知識和人文價值.如圖所示,是一棵由正方形和含30°角的直角三角形按一定規(guī)律長成的勾股樹,樹主干自下而上第一個正方形和第一個直角三角形的面積之和為S1,第二個正方形和第二個直角三角形的面積之和為S2,…,第n個正方形和第n個直角三角形的面積之和為Sn.設(shè)第一個正方形的邊長為1.
請解答下列問題:
(1)S1=
 
;
(2)通過探究,用含n的代數(shù)式表示Sn,則Sn=
 
分析:根據(jù)正方形的面積公式求出面積,再根據(jù)直角三角形三條邊的關(guān)系運用勾股定理求出三角形的直角邊,求出S1,然后利用正方形與三角形面積擴大與縮小的規(guī)律推導(dǎo)出公式.
解答:解:(1)∵第一個正方形的邊長為1,
∴正方形的面積為1,
又∵直角三角形一個角為30°,
∴三角形的一條直角邊為
1
2
,另一條直角邊就是
1 2-(
1
2
) 2
=
3
2

∴三角形的面積為
1
2
×
3
2
÷2=
3
8
,
∴S1=1+
3
8


(2)∵第二個正方形的邊長為
3
2
,它的面積就是
3
4
,也就是第一個正方形面積的
3
4
,
同理,第二個三角形的面積也是第一個三角形的面積的
3
4
,
∴S2=(1+
3
8
)•
3
4
,依此類推,S3=(1+
3
8
)•
3
4
3
4
,即S3=(1+
3
8
)•(
3
4
)
2
,
Sn=(1+
3
8
)•(
3
4
)
n-1
(n為整數(shù)).
點評:本題重點考查了勾股定理的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

相傳2500年前,古希臘著名數(shù)學(xué)家畢達哥拉斯從朋友家的地磚鋪成的地面上找到了直角三角形三邊的關(guān)系:“任意直角三角形,都有兩直角邊的平方和等于斜邊的平方.”這就是著名的“勾股定理”.它揭示了一個直角三角形三條邊之間的數(shù)量關(guān)系(如圖).
根據(jù)“勾股定理”,我們就可以由已知兩條直角邊的長來求斜邊的長.
如:a=1,b=1時,12+12=c2c=
12+12
=
2
;a=1,b=2時,c=
12+22
=
5
;

請你根據(jù)上述材料,完成下列問題:
(1)a=1,b=3時,c=
10
10

(2)如果斜邊長為
13
,則直角邊為正整數(shù)
2
2
,
3
3

(3)請你在數(shù)軸上畫出表示
13
的點(保留作圖痕跡).

查看答案和解析>>

同步練習(xí)冊答案