【題目】如圖,觀測點A、旗桿DE的底端D、某樓房CB的底端C三點在一條直線上,從點A處測得樓頂端B的仰角為22°,此時點E恰好在AB上,從點D處測得樓頂端B的仰角為38.5°.已知旗桿DE的高度為12米,試求樓房CB的高度.(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)
【答案】解:∵ED⊥AC,BC⊥AC,
∴ED∥BC,
∴△AED∽△ABC,
∴=,
在Rt△AED中,DE=12米,∠A=22°,
∴tan22°=,即AD==30米,
在Rt△BDC中,tan∠BDC=,即tan38.5°==0.8①,
∵tan22°===0.4②,
聯(lián)立①②得:BC=24米.
【解析】由ED與BC都和AC垂直,得到ED與BC平行,得到三角形AED與三角形ABC相似,由相似得比例,在直角三角形AED中,利用銳角三角函數(shù)定義求出AD的長,在直角三角形BDC中,利用銳角三角函數(shù)定義求出BC的長即可.
【考點精析】本題主要考查了關于仰角俯角問題的相關知識點,需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】某種商品的進價為40元/件,以獲利不低于25%的價格銷售時,商品的銷售單價y(元/件)與銷售數(shù)量x(件)(x是正整數(shù))之間的關系如下表:
x(件) | … | 5 | 10 | 15 | 20 | … |
y(元/件) | … | 75 | 70 | 65 | 60 | … |
(1)由題意知商品的最低銷售單價是___元,當銷售單價不低于最低銷售單價時,y是x的一次函數(shù).求出y與x的函數(shù)關系式及x的取值范圍;
(2)在(1)的條件下,當銷售單價為多少元時,所獲銷售利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線l⊥AB于點B,點C在AB上,且AC:CB=2:1,點M是直線l上的動點,作點B關于直線CM的對稱點B′,直線AB′與直線CM相交于點P,連接PB.
(1)如圖2,若點P與點M重合,則∠PAB= , 線段PA與PB的比值為
(2)如圖3,若點P與點M不重合,設過P,B,C三點的圓與直線AP相交于D,連接CD,求證:①CD=CB′;②PA=2PB
(3)如圖4,若AC=2,BC=1,則滿足條件PA=2PB的點都在一個確定的圓上,在以下小題中選做一題:
①如果你能發(fā)現(xiàn)這個確定的圓的圓心和半徑,那么不必寫出發(fā)現(xiàn)過程,只要證明這個圓上的任意一點Q,都滿足QA=2QB;
②如果你不能發(fā)現(xiàn)這個確定的圓的圓心和半徑,那么請取出幾個特殊位置的P點,如點P在直線AB上,點P與點M重合等進行探究,求這個圓的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C,D在同一條直線上,點E,F(xiàn)分別在直線AD的兩側,且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時,四邊形BFCE是菱形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點P的坐標為(0,4),直線y=x﹣3與x軸、y軸分別交于點A,B,點M是直線AB上的一個動點,則PM長的最小值為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B′處,兩條折痕與斜邊AB分別交于點E、F,則線段B′F的長為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人.
(1)求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”或“列表”等方式給出分析過程)
(2)如果甲跟另外n(n≥2)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△OAB的頂點A(﹣4,8)在拋物線y=ax2上,將Rt△OAB繞點O順時針旋轉90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).
(1)求拋物線的函數(shù)表達式;
(2)若點P在拋物線上,且S△AOP=4SBOC , 求點P的坐標;
(3)如圖b,設點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com