如圖,將□ABCD的邊DC延長到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.⑴求證:△ABF≌△ECF
⑵若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.
(1)∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD。∴∠ABF=∠ECF!逧C=DC,∴AB=EC。在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF
(2)∵AB=EC ,AB∥EC,∴四邊形ABEC是平行四邊形!郃F=EF, BF=CF!咚倪呅蜛BCD是平行四邊形。
∴∠ABC=∠D。又∵∠AFC=2∠D,∴∠AFC=2∠ABC。 ∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF.∴FA=FB!郌A=FE=FB=FC,∴AE=BC。∴四邊形ABEC是矩形
【解析】
試題分析:
證明:⑴證明全等三角形,可以采用SSS、SAS、ASA、AAS、直角三角形可用HL,觀察圖形和審題,可以找到對頂角相等,由于位于平行四邊形中,還有內(nèi)錯(cuò)角相等,對應(yīng)邊相等,由此可找出相應(yīng)條件證明。
∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD!唷螦BF=∠ECF!逧C=DC,∴AB=EC。在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF。
(2)證明四邊形是矩形,可以通過證明有一個(gè)角是90°的平行四邊形,或者證明是對角邊互相平分的平行四邊形。證明過程如下:
∵AB=EC ,AB∥EC,∴四邊形ABEC是平行四邊形!郃F=EF, BF=CF!咚倪呅蜛BCD是平行四邊形。
∴∠ABC=∠D。又∵∠AFC=2∠D,∴∠AFC=2∠ABC。 ∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF.∴FA=FB!郌A=FE=FB=FC,∴AE=BC!嗨倪呅蜛BEC是矩形。
考點(diǎn):全等三角形和矩形的證明
點(diǎn)評(píng):該題考查學(xué)生對全等三角形和矩形的證明,要熟練掌握相應(yīng)的判定定理,尋找題中提供的條件,再選擇證明方法。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com