(2002•麗水)如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是    cm.
【答案】分析:正六邊形的邊長(zhǎng)與外接圓的半徑相等,構(gòu)建直角三角形,利用直角三角形的邊角關(guān)系即可求出.
解答:解:已知正六邊形ABCDEF的外接圓半徑為2cm,連接OA,作OM⊥AB,得到∠AOM=30度,因而OM=OA•cos30°=cm.
正六邊形的邊心距是cm.
點(diǎn)評(píng):連接正六邊形的中心與各個(gè)頂點(diǎn),正六邊形被半徑分成六個(gè)全等的正三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2002•麗水)如圖,直線y1=kx+b經(jīng)過點(diǎn)P(5,3),且分別與已知直線y2=3x交于點(diǎn)A、與x軸交于點(diǎn)B.設(shè)點(diǎn)A的橫坐標(biāo)為m(m>1且m≠5).
(1)用含m的代數(shù)式表示k;
(2)寫出△AOB的面積S關(guān)于m的函數(shù)解析式;
(3)在直線y2=3x上是否存在點(diǎn)A,使得△AOB面積最?若存在,請(qǐng)求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年浙江省麗水市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•麗水)如圖,直線y1=kx+b經(jīng)過點(diǎn)P(5,3),且分別與已知直線y2=3x交于點(diǎn)A、與x軸交于點(diǎn)B.設(shè)點(diǎn)A的橫坐標(biāo)為m(m>1且m≠5).
(1)用含m的代數(shù)式表示k;
(2)寫出△AOB的面積S關(guān)于m的函數(shù)解析式;
(3)在直線y2=3x上是否存在點(diǎn)A,使得△AOB面積最小?若存在,請(qǐng)求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:選擇題

(2002•麗水)如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,CD=2,BD=1,則AD的長(zhǎng)是( )

A.1
B.
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《圓》(08)(解析版) 題型:填空題

(2002•麗水)如圖,PT是半徑為4的⊙O的一條切線,切點(diǎn)為T,PBA是經(jīng)過圓心的一條割線,若B是OP的中點(diǎn),則PT的長(zhǎng)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年浙江省麗水市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•麗水)如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,CD=2,BD=1,則AD的長(zhǎng)是( )

A.1
B.
C.2
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案