如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.

   (1)求證:PC是⊙O的切線;

   (2)求∠P的度數(shù);

   (3)點M是弧AB的中點,CM交AB于點N,AB=4,求線段BM、CM及弧BC所圍成的圖形面積。

 


解:(1)∵OA=OC,∴∠A=∠ACO    

   ∵∠COB=2∠A ,∠COB=2∠PCB            

   ∴∠A=∠ACO=∠PCB      ……………………………………………………1分

           ∵AB是⊙O的直徑

   ∴∠ACO+∠OCB=90°        …………………………………………………2分

          ∴∠PCB+∠OCB=90°,即OC⊥CP     …………………………………………3分

∵OC是⊙O的半徑                    

  ∴PC是⊙O的切線          ………………………4分

        (2)∵PC=AC  ∴∠A=∠P

m

 

D

 
         ∴∠A=∠ACO=∠P          ………………5分

         ∵∠A+∠ACO+∠PCO+∠P=180°

 ∴3∠P=90°                

         ∴∠P=30°            …………………………6分

(3) ∵點M是半圓O的中點   ∴∠BCM=45°………7分

 由(2)知∠BMC=∠A=∠P=30°∴BC=AB=2 ……8分

作BD⊥CM于D,∴CD=BD=  ∴DM= 

∴CM=            …………………9分

∴S△BCM=   ………………10分

∵∠BOC=2∠A=60°   ∴弓形BmC的面積=  …………11分

∴線段BM、CM及弧BC所圍成的圖形面積為  …………12分

(注:其它解法,請參照給分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結(jié)論不成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當(dāng)AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案