在Rt△ABC中,∠C=90°,BC=5,AC=12,若以C為圓心,R為半徑作的圓與斜邊AB沒有公共點(diǎn),則R的取值范圍是
 
分析:要使圓和斜邊沒有公共點(diǎn),則有兩種情況:(1)直線和圓相離;(2)直線和圓相交,但交點(diǎn)不在斜邊上.
根據(jù)題意,畫出圖形,求出直角三角形斜邊上的高,便可直觀得出半徑的取值范圍.
解答:精英家教網(wǎng)解:如圖所示,AB=
52+122
=13.
根據(jù)
1
2
CD•AB=
1
2
AC•BC,
即13×CD=5×12,
得CD=
60
13
,CA=12.
于是0<R<
60
13
,或R>12.
點(diǎn)評:此題要特別注意不要漏掉直線和圓相交,但交點(diǎn)不在斜邊上的情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊答案