如圖,在平面直角坐標(biāo)系中,點(diǎn)P從原點(diǎn)O出發(fā),沿x軸向右以毎秒1個單位長的速度運(yùn)動t秒(t>0),拋物線y=x2+bx+c經(jīng)過點(diǎn)O和點(diǎn)P,已知矩形ABCD的三個頂點(diǎn)為A(1,0),B(1,-5),D(4,0).

(1)求c,b(用含t的代數(shù)式表示):

(2)當(dāng)4<t<5時,設(shè)拋物線分別與線段AB,CD交于點(diǎn)M,N.

①在點(diǎn)P的運(yùn)動過程中,你認(rèn)為∠AMP的大小是否會變化?若變化,說明理由;若不變,求出∠AMP的值;

②求△MPN的面積S與t的函數(shù)關(guān)系式,并求t為何值時,S=;

(3)在矩形ABCD的內(nèi)部(不含邊界),把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“好點(diǎn)”.若拋物線將這些“好點(diǎn)”分成數(shù)量相等的兩部分,請直接寫出t的取值范圍.

答案:
解析:

  分析:(1)由拋物線y=x2+bx+c經(jīng)過點(diǎn)O和點(diǎn)P,將點(diǎn)O與P的坐標(biāo)代入方程即可求得c,b;

  (2)①當(dāng)x=1時,y=1-t,求得M的坐標(biāo),則可求得∠AMP的度數(shù),

  ②由S=S四邊形AMNP-S△PAM=S△DPN+S梯形NDAM-S△PAM,即可求得關(guān)于t的二次函數(shù),列方程即可求得t的值;

  (3)根據(jù)圖形,即可直接求得答案.

  解答:解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,

  再把x=t,y=0代入y=x2+bx,得t2+bt=0,

  ∵t>0,

  ∴b=-t;

  (2)①不變.

  如題干圖,當(dāng)x=1時,y=1-t,故M(1,1-t),

  ∵tan∠AMP=1,

  ∴∠AMP=45°;

 、赟=S四邊形AMNP-S△PAM=S△DPN+S梯形NDAM-S△PAM(t-4)(4t-16)+[(4t-16)+(t-1)]×3-(t-1)(t-1)=t2t+6.

  解t2t+6=

  得:t1,t2

  ∵4<t<5,

  ∴t1舍去,

  ∴t=

  (3)<t<

  點(diǎn)評:此題考查了二次函數(shù)與點(diǎn)的關(guān)系,以及三角形面積的求解方法等知識.此題綜合性很強(qiáng),難度適中,解題的關(guān)鍵是注意數(shù)形結(jié)合與方程思想的應(yīng)用.


提示:

二次函數(shù)綜合題.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案