作业宝如圖,P是⊙O外一點,PA是⊙O的切線,A是切點,B是⊙O上一點,且PA=PB,連接BO并延長與切線PA相交于點Q.求證:
(1)PB是⊙O的切線;
(2)AQ•PQ=OQ•BQ.

證明:(1)連結(jié)OA、OP,如圖,
∵PA是⊙O的切線,
∴OA⊥PA,
∴∠OAP=90°,
在△PAO和△PBO中,
,
∴△PAO≌△PBO(SSS),
∴∠OBP=∠OAP=90°,
∴OB⊥PB,
∴PB是⊙O的切線;

(2)∵∠OBP=∠OAP=90°,
而∠AQO=∠BQP,
∴Rt△PBQ∽Rt△OAQ,
∴PQ:OQ=BQ:AQ,
∴AQ•PQ=OQ•BQ.
分析:(1)連結(jié)OA、OP,由PA是⊙O的切線,根據(jù)切線的性質(zhì)得∠OAP=90°,則可根據(jù)“SSS”判斷△PAO≌△PBO,則∠OBP=∠OAP=90°,然后根據(jù)切線的判定定理得到PB是⊙O的切線;
(2)由于∠AQO=∠BQP,根據(jù)三角形相似的判定可得到Rt△PBQ∽Rt△OAQ,由相似的性質(zhì)得PQ:OQ=BQ:AQ,然后根據(jù)比例性質(zhì)即可得到結(jié)論.
點評:本題考查了切線的判定與性質(zhì):經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點的半徑.也考查了相似三角形的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,P是⊙O外一點,PA切⊙O于A,AB是⊙O的直徑,PB交⊙O于C,若PA=2cm,∠B=30°,求出圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•重慶) 如圖,P是⊙O外一點,PA是⊙O的切線,PO=26cm,PA=24cm,則⊙O的周長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)二模)已知:如圖,P是⊙O外一點,PA切⊙O于點A,AB是⊙O的直徑,BC∥OP交⊙O于點C.
(1)判斷直線PC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若BC=2,sin
1
2
∠APC=
1
3
,求PC的長及點C到PA的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P是⊙O外一點,PA、PB切⊙O于點A、B,點C在優(yōu)弧AB上,若么P=68°,則∠ACB等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P是⊙O外一點,PA和PB是⊙O的切線,A,B為切點,P O與AB交于點M,過M任作⊙O的弦CD.
求證:∠CPO=∠DPO.

查看答案和解析>>

同步練習(xí)冊答案