【題目】在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分線.
(1)求∠DCE的度數(shù).
(2)若∠CEF=135°,求證:EF∥BC.
【答案】
(1)解:∵∠B=30°,CD⊥AB于D,
∴∠DCB=90°﹣∠B=60°.
∵CE平分∠ACB,∠ACB=90°,
∴∠ECB= ∠ACB=45°,
∴∠DCE=∠DCB﹣∠ECB=60°﹣45°=15°
(2)解:∵∠CEF=135°,∠ECB= ∠ACB=45°,
∴∠CEF+∠ECB=180°,
∴EF∥BC
【解析】(1)由圖示知∠DCE=∠DCB﹣∠ECB,由∠B=30°,CD⊥AB于D,利用內(nèi)角和定理,求出∠DCB的度數(shù),又由角平分線定義得∠ECB= ∠ACB,則∠DCE的度數(shù)可求;(2)根據(jù)∠CEF+∠ECB=180°,由同旁?xún)?nèi)角互補(bǔ),兩直線平行可以證明EF∥BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的4×4方格中,每個(gè)小方格的邊長(zhǎng)都為1
(1)在圖(1)中畫(huà)出長(zhǎng)度為 的線段,要求線段的端點(diǎn)在格點(diǎn)上;
(2)在圖(2)中畫(huà)出一個(gè)三條邊長(zhǎng)分別為3,2 , 的三角形,使它的端點(diǎn)都在格點(diǎn)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的文字,解答問(wèn)題. 大家知道 是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此 的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),但是由于1< <2,所以 的整數(shù)部分為1,將 減去其整數(shù)部分1,差就是小數(shù)部分 ﹣1,根據(jù)以上的內(nèi)容,解答下面的問(wèn)題:
(1) 的整數(shù)部分是 , 小數(shù)部分是;
(2)1+ 的整數(shù)部分是 , 小數(shù)部分是;
(3)若設(shè)2+ 整數(shù)部分是x,小數(shù)部分是y,求x﹣ y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.x=1是不等式-2x<1的解集
B.x=-3是不等式-x<1的解集
C.x>-2是不等式-2x<1的解集
D.不等式-x<1的解集是x<-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列給出的四個(gè)點(diǎn)中,在函數(shù)y=3x+1的圖象上的是( )
A. (1,4) B. (0,-1) C. (2,-7) D. (-1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C、D分別在扇形AOB的半徑OA、OB的延長(zhǎng)線上,且OA=3,AC=3-3,CD∥AB,并與弧AB相交于點(diǎn)M、N.
(1)求線段OD的長(zhǎng);
(2)若sin∠C=,求弦MN的長(zhǎng);
(3)在(2)的條件下,求優(yōu)弧MEN的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+ax+a-3=0.
(1) 若該方程有一根是-2,求另一根;
(2) 求證:不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com