【題目】常州春秋旅行社為吸引市民組團(tuán)去天水灣風(fēng)景區(qū)旅游,推出了如下收費(fèi)標(biāo)準(zhǔn):
某單位組織員工去天水灣風(fēng)景區(qū)旅游,共支付給春秋旅行社旅游費(fèi)用27000元,請問該單位這次共有多少員工去天水灣風(fēng)景區(qū)旅游?
【答案】設(shè)該單位去風(fēng)景區(qū)旅游人數(shù)為x人,則人均費(fèi)用為1000-20(x-25)元
由題意得 x[1000-20(x-25)]=27000
整理得x2-75x+1350=0,
解得x1=45,x2=30.
當(dāng)x=45時(shí),人均旅游費(fèi)用為1000-20(x-25)=600<700,不符合題意,應(yīng)舍去.
當(dāng)x=30時(shí),人均旅游費(fèi)用為1000-20(x-25)=900>700,符合題意.
答:該單位去風(fēng)景區(qū)旅游人數(shù)為30人.
【解析】試題分析:首先根據(jù)共支付給春秋旅行社旅游費(fèi)用27 000元,確定旅游的人數(shù)的范圍,然后根據(jù)每人的旅游費(fèi)用×人數(shù)=總費(fèi)用,設(shè)該單位這次共有x名員工去天水灣風(fēng)景區(qū)旅游.即可由對話框,超過25人的人數(shù)為(x-25)人,每人降低20元,共降低了20(x-25)元.實(shí)際每人收了[1000-20(x-25)]元,列出方程求解.
試題解析:設(shè)該單位這次共有x名員工去天水灣風(fēng)景區(qū)旅游.
因?yàn)?/span>1000×25=25000<27000,所以員工人數(shù)一定超過25人.
可得方程[1000-20(x-25)]x=27000.
整理得x2-75x+1350=0,
解得x1=45,x2=30.
當(dāng)x1=45時(shí),1000-20(x-25)=600<700,故舍去x1;
當(dāng)x2=30時(shí),1000-20(x-25)=900>700,符合題意.
答:該單位這次共有30名員工去天水灣風(fēng)景區(qū)旅游.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系中.
(1)若把△ABC向上平移2個(gè)單位長度,再向左平移1個(gè)單位長度得到△A1B1C1,寫出A1,B1,C1的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E,F(xiàn),G分別是AD,CD,BC上的點(diǎn),且BE=EF,BE⊥EF,EG⊥BF.若FC=1,AE=2,則BG的長是( )
A.2.6
B.2.5
C.2.4
D.2.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程。
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB、AC的長是方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長為5。當(dāng)△ABC是等腰三角形時(shí),求k的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)E是AD邊上一點(diǎn),BE=BC.
(1)求證:EC平分∠BED.
(2)過點(diǎn)C作CF⊥BE,垂足為點(diǎn)F,連接FD,與EC交于點(diǎn)O,求FD·EC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段AB兩端點(diǎn)坐標(biāo)分別為A(﹣1,4),B(4,﹣2),現(xiàn)將線段AB平移后點(diǎn)A的對應(yīng)點(diǎn)坐標(biāo)為(﹣4,2),則點(diǎn)B的對應(yīng)點(diǎn)的坐標(biāo)為( )
A.(1,4)
B.(1,﹣4)
C.(2,﹣5)
D.(1,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BE⊥AC,DF⊥AC,垂足分別為E,F(xiàn),BE=DF,AE=CF.
(1)求證:△AFD≌△CEB;
(2)若∠CBE=∠BAC,四邊形ABCD是怎樣的四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在抗擊新冠狀病毒戰(zhàn)斗中,有152箱公共衛(wèi)生防護(hù)用品要運(yùn)到A、B兩城鎮(zhèn),若用大小貨車共15輛,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,則恰好能一次性運(yùn)完這批防護(hù)用品求這大小貨車各多少輛?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com