【題目】作圖并填空
如圖,在Rt△ABC,∠BAC=90°,AD⊥BC于D,在②③圖中,MN=AB,∠MNE=∠B,現(xiàn)要以②③圖為基礎,在射線NE上確定一點P,構造出一個△MNP與①圖中某一個三角形全等.
(1)用邊長限制P點,畫法:_____,可根據(jù)SAS,AAS,ASA,HL中的______得到______.
(2)用直角限制點P,畫法:_______,可根據(jù)SAS,AAS,ASA,HL中的______得到______.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC 頂點 A(2,3).若以原點 O 為位似中心,畫三角形 ABC
的位似圖形△A′B′C′,使△ABC 與△A′B′C′的相似比為,則 A′的坐標為( )
A. (3, ) B. ( ,6) C. (3, )或(-3,- ) D. ( ,6)或(- ,-6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把n個邊長為1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,計算tan∠BA4C=_____,…按此規(guī)律,寫出tan∠BAnC=_____(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鳳城中學九年級(3)班的班主任讓同學們?yōu)榘鄷顒釉O計一個摸球方案,這些球除顏色外都相同,擬使中獎概率為50%.
(1)小明的設計方案:在一個不透明的盒子中,放入黃、白兩種顏色的球共6個,攪勻后從中任意摸出1個球,摸到黃球則表示中獎,否則不中獎.如果小明的設計符合老師要求,則盒子中黃球應有 個,白球應有 個;
(2)小兵的設計方案:在一個不透明的盒子中,放入2個黃球和1個白球,攪勻后從中任意摸出2個球,摸到的2個球都是黃球則表示中獎,否則不中獎,該設計方案是否符合老師的要求?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D、E分別在AB、AC上,且CE=BC,連接CD,將線段CD繞點C按順時針方向旋轉90°后得到CF,連接EF.
(1)求證:△BDC≌△EFC;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣2x經(jīng)過點P(﹣2,a),點P關于y軸的對稱點P′在反比例函數(shù)y=(k≠0)的圖象上.
(1)求反比例函數(shù)的解析式;
(2)直接寫出當y<4時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)生產并銷售某種產品,假設銷售量與產量相等,如圖中的折線ABD、線段CD分別表示該產品每千克生產成本(單位:元)、銷售價(單位:元)與產量x(單位:kg)之間的函數(shù)關系.
(1)請解釋圖中點D的橫坐標、縱坐標的實際意義;
(2)求線段AB所表示的與x之間的函數(shù)表達式;
(3)當該產品產量為多少時,獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某地區(qū)一條公路隧道入口在平面直角坐標系中的示意圖,點A和A1、點B和B1分別關于y軸對稱.隧道拱部分BCB1為一段拋物線,最高點C離路面AA1的距離為8 m,點B離路面AA1的距離為6 m,隧道寬AA1為16 m.
(1)求隧道拱部分BCB1對應的函數(shù)表達式.
(2)現(xiàn)有一大型貨車,裝載某大型設備后,寬為4 m,裝載設備的頂部離路面均為7 m,問:它能否安全通過這個隧道?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,湖中的小島上有一標志性建筑物,其底部為A,某人在岸邊的B處測得A在B的北偏東30°的方向上,然后沿岸邊直行4公里到達C處,再次測得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求這個標志性建筑物底部A到岸邊BC的最短距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com