如圖1,在直角梯形ABCD中,∠B=90°,ADBC,且AD=4cm,AB=6cmDC=10cm.若動點PA點出發(fā),以每秒4cm的速度沿線段AD、DCC點運動;動點QC點出發(fā)以每秒5cm的速度沿CBB點運動. 當(dāng)Q點到達B點時,動點P、Q同時停止運動. 設(shè)點P、Q同時出發(fā),并運動了t秒,

(1)直角梯形ABCD的面積為              cm2.

(2)當(dāng)t     秒時,四邊形PQCD成為平行四邊形?

(3)當(dāng)t     秒時,AQ=DC;

(4)是否存在t,使得P點在線段DC上,且PQDC(如圖2所示)?

若存在,求出此時t的值,若不存在,說明理由.

 


(1)48……………2分     (2)  ……………4分  (3)………………6分

(4)連接DQ

    ∴根據(jù)面積相等得,PQ=3t…………………7分

CQ=5t, PC=14-4t

∴根據(jù)勾股定理得,(5t)2=(5t)2+(14-4t)2…………………9分

∴t=…………………10分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖1,在直角梯形ABCD中,動點P從點B出發(fā),沿BC,CD運動至點D停止.設(shè)點P運動的路程為x,△ABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則△BCD的面積是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:如圖1,在直角梯形ABCD中,AB∥CD,∠B=90°,點P在BC邊上,當(dāng)∠APD=90°時,易證△ABP∽△PCD,從而得到BP•PC=AB•CD,解答下列問題.
(1)模型探究:如圖2,在四邊形ABCD中,點P在BC邊上,當(dāng)∠B=∠C=∠APD時,求證:BP•PC=AB•CD;
(2)拓展應(yīng)用:如圖3,在四邊形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于點O,以O(shè)為頂點,以BC所在直線為x軸,建立平面直角坐標(biāo)系,點P為線段OC上一動點(不與端點O、C重合)
(i)當(dāng)∠APD=60°時,求點P的坐標(biāo);
(ii)過點P作PE⊥PD,交y軸于點E,設(shè)PO=x,OE=y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE.容易證得:CE=CF;
(1)在圖1中,若G在AD上,且∠GCE=45°,試猜想GE、BE、GD三線段之間的關(guān)系,并證明你的結(jié)論;
(2)在(1)的條件下,若以C為圓心,CD為半徑作圓,試判斷此圓與直線EG的位置關(guān)系,并說明理由;
(3)運用(1)中解答所積累的經(jīng)驗和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一點,且∠DCE=45°,BE=4,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在直角梯形ABCD中,∠B=90°,DC∥AB,動點P從B點出發(fā),沿折線B→C→D→A運動,點P運動的速度為2個單位長度/秒,若設(shè)點P運動的時間為x秒,△ABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖2所示,則△ABC的面積為( 。
精英家教網(wǎng)
A、16B、48C、24D、64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.有兩個動點E、F分別在線段CD與BC上運動,點E以每秒1cm的速度從點C向點D勻速運動.點F以每秒2cm的速度從點B向點C勻速運動;當(dāng)其中一點到達終點時,另一點也隨之停止.設(shè)運動的時間為t秒.
(1)求AD的長;
(2)設(shè)四邊形BFED的面積為y,求y 關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)點E、F在運動過程中,如果由點C、E、F構(gòu)成的三角形與△BDC相似,求線段BF的長.

查看答案和解析>>

同步練習(xí)冊答案