【題目】如圖,AB是直經,D的中點,DEACAC的延長線于E,O的切線BFAD的延長線于點F

1)求證:DEO的切線.

2)試探究AEAD,AB三者之間的等量關系.

3)若DE=3,O的半徑為5,求BF的長.

【答案】1)證明見解析;(2AD2=AEAB;(3BF=

【解析】

1)根據圓的性質可知∠ACB=90°,從而結合DEAC證明出BCDE,再利用點D的中點得出∠COD=BOD,進一步證明OD垂直平分BC,然后利用平行線性質即可證明出結論;

2)根據題意首先證明△AED∽△ADB,然后利用相似三角形性質進一步求解即可;

3)根據題意可得四邊形CHDE為矩形,然后進一步根據圖形結合勾股定理可得AE=AC+CE=9,最后通過證明△EAD∽△BAF進一步求解即可.

如圖,連接OC,OD,BCODBC交于點H,

(1)∵AB是直徑,

∴∠ACB=90°

DEACE,

∴∠E=90°,

∴∠ACB=E,

BCDE

∵點D的中點,

,

∴∠COD=BOD

又∵OC=OB,

OD垂直平分BC

BCDE

ODDE,

DE是⊙O的切線;

2AD2=AEAB.理由如下:

由(1)知,,

∴∠EAD=DAB

AB為直徑,

∴∠ADB=E=90°,

∴△AED∽△ADB,

,

AD2=AEAB;

3)由(1)知,∠E=ECH=CHD=90°,

∴四邊形CHDE為矩形,

ED=CH=BH=3,

OH=

CE=HD=ODOH=54=1,AC=,

AE=AC+CE=9

BF是⊙O的切線,

∴∠FBA=E=90°,

又∵∠EAD=DAB,

∴△EAD∽△BAF

,

BF=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了解九年級學生對三大球類運動的喜愛情況,從九年級學生中隨機抽取部分學生進行調查問卷,通過分析整理繪制了如下兩幅統(tǒng)計圖.請根據兩幅統(tǒng)計圖中的信息回答下列問題:

(1)求參與調查的學生中,喜愛排球運動的學生人數(shù),并補全條形圖;

(2)若該中學九年級共有800名學生,請你估計該中學九年級學生中喜愛籃求運動的學生有多少名?

(3)若從喜愛足球運動的2名男生和2名女生中隨機抽取2名學生,確定為該校足球運動員的重點培養(yǎng)對象,請用列表法或畫樹狀圖的方法求抽取的兩名學生為一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(初步探究)

1)如圖1,在四邊形ABCD中,∠B=∠C90°,點E是邊BC上一點,ABEC,BECD,連接AE、DE.判斷△AED的形狀,并說明理由.

(解決問題)

2)如圖2,在長方形ABCD中,點P是邊CD上一點,在邊BC、AD上分別作出點EF,使得點F、E、P是一個等腰直角三角形的三個頂點,且PEPF,∠FPE90°.要求:僅用圓規(guī)作圖,保留作圖痕跡,不寫作法.

(拓展應用)

3)如圖3,在平面直角坐標系xOy中,已知點A2,0),點B4,1),點C在第一象限內,若△ABC是等腰直角三角形,則點C的坐標是   

4)如圖4,在平面直角坐標系xOy中,已知點A1,0),點Cy軸上的動點,線段CA繞著點C按逆時針方向旋轉90°至線段CB,CACB,連接BO、BA,則BO+BA的最小值是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABC中,ABAC,以AB為直徑的⊙OBC于點D,過點DDEAC于點E

1)求證:DE是⊙O的切線.

2)若⊙O的半徑為3cm,∠C30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為圓外一點,AC交⊙O于點D,BC2=CDCA,弦ED=BD,BEACF.

(1)求證:BC為⊙O切線;

(2)判斷BCF的形狀并說明理由;

(3)已知BC=15,CD=9,求tanADE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 拋物線軸交于點A(-1,0),頂點坐標(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結論:①;②;③對于任意實數(shù)m,總成立;④關于的方程有兩個不相等的實數(shù)根.其中結論正確的個數(shù)為  

A. 1 個 B. 2 個 C. 3 個 D. 4 個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列結論:①;②;③;④.其中正確的結論是(

A.①②B.①③C.①③④D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形的邊長為,點為正方形的中心,點邊上一動點,直線于點,過點,垂足為點,連接,則的最小值為(

A.2B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+c經過點A0,2)和點B-10).

1)求此拋物線的解析式;

2)將此拋物線平移,使其頂點坐標為(2,1),平移后的拋物線與x軸的兩個交點分別為點C,D(點C在點D的左邊),求點CD的坐標;

3)將此拋物線平移,設其頂點的縱坐標為m,平移后的拋物線與x軸兩個交點之間的距離為n,若1m3,直接寫出n的取值范圍.

查看答案和解析>>

同步練習冊答案