如圖,PA切⊙O于A,PBC過圓心O,交⊙O于B、C,CD⊥PA于D,交⊙O于點E.
(1)求證:CA平分∠BCD.
(2)若DC=6,AC=4數(shù)學公式,求⊙O的半徑.
(3)作AG⊥BC于G,連接AB、DG,判斷AB與DG的位置關系,并證明.

(1)證明:連接OA,
∵PD切⊙O于A,
∴OA⊥PD,
∵CD⊥PD,
∴∠PAO=∠PDC=90°,
∴OA∥CD,
∴∠OAC=∠ACD,
在⊙O中,OA=OC,
∴∠OAC=∠OCA,
∴∠ACD=∠OCA,
∴CA平分∠BCD;
(2)連接BA,
在⊙O中,BC為直徑,
∴∠BAC=90°,
∴∠BAC=∠PDC,
∵∠ACO=∠ACD,
∴△BCA∽△ACD,
=,
∴AC2=BC•DC,即(42=6BC,
∴BC=8,
∴⊙O的半徑為4;
(3)AB∥DG,理由為:
證明:∵AG⊥BC,
∴∠AGC=∠ADC=90°,
在△ACG和△ACD中,
,
∴△ACG≌△ACD(AAS),
∴AG=AD,∠GAC=∠DAC,
∴AC⊥GD,
∵BA⊥AC,
∴∠BAC=∠GMC=90°,
∴AB∥DG.
分析:(1)連接OA,由PD為圓的切線,利用切線的性質得到PD與OA垂直,再由CD與PD垂直,確定出OA與CD平行,利用兩直線平行得到一對內(nèi)錯角相等,再由OA=OC,利用等邊對等角得到一對角相等,等量代換得到一對角相等,即CA為角平分線;
(2)連接AB,由CA為角平分線,得到一對角相等,再由BC為直徑,利用直徑所對的圓周角為直角得到一對直角相等,利用兩對角相等的兩三角形相似得到三角形ABC與三角形ACD相似,由相似得比例,將DC與AC的值代入計算即可求出BC的長,進而確定出圓的半徑;
(3)AB與DG平行,理由為:過A作AG垂直于BC,連接DG,由CA為角平分線得到一對角相等,再由一對直角相等,AC為公共邊,利用AAS得到三角形ACD與三角形ACG全等,利用全等三角形對應邊相等得到AD=AG,AC為角平分線,利用三線合一得到AC與DG垂直,再由BA與AC垂直,得到一對直角相等,利用同位角相等兩直線平行即可得到AB與DG平行.
點評:此題考查了切線的性質,相似三角形的判定與性質,全等三角形的判定與性質,等腰三角形的性質,平行線的判定與性質,熟練掌握切線的性質是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA切⊙O于點A,PO交⊙O于點B,若PA=6,BP=4,則⊙O的半徑為( 。
A、
5
4
B、
5
2
C、2
D、5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA切⊙O于點A,PBC是⊙O的割線,且PB=BC,如果PA=3
2
,那么BC的長為( 。
A、3
2
B、3
C、
3
D、2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、如圖,PA切⊙O于點A,PBC是⊙O的割線且過圓心,PA=4,PB=2,則⊙O的半徑等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA切⊙O于點A,PB切⊙O于點B,如果∠APB=60°,⊙O半徑是3,則劣弧AB的長為(  )
A、
π
2
B、π
C、2π
D、4π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列結論中錯誤的是(  )

查看答案和解析>>

同步練習冊答案