【題目】定義:如圖,點(diǎn)M、N把線段AB分割成AM、MN、NB,若以AM、MN、NB為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)MN是線段AB的勾股分割點(diǎn).

1)已知M、N把線段分割成AM、MNNB,若,,則點(diǎn)M、N是線段AB的勾股分割點(diǎn)嗎?請(qǐng)說明理由.

2)已知M、N是線段AB的勾股分割點(diǎn),且AM為直角邊,若AB=12,AM=5,求BN的長(zhǎng).

【答案】1)點(diǎn)MN是線段AB的勾股分割點(diǎn);(2

【解析】

1)由已知可得,依據(jù)勾股定理逆定理即可得結(jié)論,

2)設(shè),則,分兩種情形當(dāng)為斜邊時(shí),依題意,當(dāng)為最斜邊時(shí),依題意,分別列出方程即可解決問題.

解:(1)是.

理由:,,,

,

,

、、為邊的三角形是一個(gè)直角三角形.

即:點(diǎn)M、N是線段AB的勾股分割點(diǎn).

2)設(shè),則,

①當(dāng)為最長(zhǎng)線段時(shí),依題意

,解得,

②當(dāng)為最長(zhǎng)線段時(shí),依題意

,解得

綜上所述的長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某種品牌小汽車的耗油量,我們對(duì)這種車在高速公路上做了耗油試驗(yàn),并把試驗(yàn)的數(shù)據(jù)記錄下來,制成下表:

汽車行駛時(shí)間th

0

1

2

3

油箱剩余油量QL

100

94

88

82

①根據(jù)上表的數(shù)據(jù),請(qǐng)你寫出Qt的關(guān)系式;

②汽車行駛5h后,油箱中的剩余油量是多少?

③該品牌汽車的油箱加滿50L,若以100km/h的速度勻速行駛,該車最多能行駛多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)是(2,2),若點(diǎn)Px軸上,且APO是等腰三角形,則點(diǎn)P_____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB//CD

1)如圖①,若∠ABE=40o,∠BEC=140o,∠ECD=_________o

2)如圖①,試探究∠ABE,∠BEC,∠ECD的關(guān)系,并說明理由;

3)如圖②,若CF平分∠ECD,且滿足CFBE,試探究∠ECD,∠ABE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DFAC,E點(diǎn)為DF上的點(diǎn),BAC上的點(diǎn),∠1=∠2.求證:∠C=∠D.請(qǐng)你根據(jù)條件進(jìn)行推理,得出結(jié)論,并在括號(hào)內(nèi)注明原因.

證明:∵∠1=∠2(已知)

1=∠3,∠2=∠4_______,

∴∠3=∠4(等量代換),

_________________,

∴∠C=∠ABD_______

DFAC(已知)

∴∠D=∠ABD_______,

∴∠C=∠D_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,過B點(diǎn)作BM⊥AC于點(diǎn)E,交CD于點(diǎn)M,過D點(diǎn)作DN⊥AC于點(diǎn)F,交AB于點(diǎn)N.

(1)求證:四邊形BMDN是平行四邊形;

(2)已知AF=12,EM=5,求AN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(復(fù)習(xí)舊知)

結(jié)合數(shù)軸與絕對(duì)值的知識(shí)回答下列問題:

數(shù)軸上表示41的兩點(diǎn)之間的距離是3:而│41│3;表示-32兩點(diǎn)之間的距離是5:而32│5;表示-4和-7兩點(diǎn)之間的距離是3,而4(7)│3

一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點(diǎn)之間的距離公式為mn

1)數(shù)軸上表示數(shù)-5的點(diǎn)與表示-2的點(diǎn)之間的距離為________;

(探索新知)

如圖①,我們?cè)?/span>格點(diǎn)直角坐標(biāo)系上可以清楚看到:要找ABDE的長(zhǎng)度,顯然是化為求Rt△ABCRt△DEF的斜邊長(zhǎng).

下面:以求DE為例來說明如何解決.

從坐標(biāo)系中發(fā)現(xiàn):D(-7,5),E(4,-3).所以DF│5(38EP│4(711,所以由勻股定理可得:DE

2)在圖②中:設(shè)Ax1y1),B(x2,y2),試用x1,y1x2,y2表示:

AC____________,BC____________AB____________

得出的結(jié)論被稱為平面直角坐標(biāo)系中兩點(diǎn)間距離公式

(學(xué)以致用)

請(qǐng)用此公式解決如下題目:

3)已知:A(2,1),B(4,3),C為坐標(biāo)軸上的點(diǎn),且使得ABC是以AB為底邊的等腰三角形.請(qǐng)求出C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)己知2a-1的平方根是土3,3a+b-1的平方根是土4,c的整數(shù)部分,求a+2b+c的算術(shù)平方根.

2)已知在△ABC中,AB=10,BC=21,AC=17,則△ABC面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市政府為響應(yīng)黨中央建設(shè)社會(huì)主義新農(nóng)村和節(jié)約型社會(huì)的號(hào)召,決定資助部分農(nóng)村地區(qū)修建一批沼氣池,使農(nóng)民用到經(jīng)濟(jì).環(huán)保的沼氣能源.紅星村共有360戶村民,村里得到34萬元的政府資助款,準(zhǔn)備再從各戶籌集一部分資金修建A.B型沼氣池共20個(gè),兩種型號(hào)沼氣池每個(gè)修建費(fèi)用,可供使用的戶數(shù).修建用地情況見下表:

沼氣池

維修費(fèi)用

(萬元/個(gè)

可供使用戶數(shù)

(戶/個(gè)

占地面積

(平方米/個(gè)

A

3

20

24

B

2

15

19

政府土地部分只批給該沼氣池修建用地450平方米,

(1)試問有哪幾種滿足以上要求的修建方案?

(2)平均每村民籌集500元錢,能否滿足所需費(fèi)用最少的修建方案?

(3)在(2)問下,若每個(gè)A型沼氣池可不需維修使用8年,每年可節(jié)省能源費(fèi)1200元,每個(gè)B型沼氣池可不需維修使用7年,每年可節(jié)省能源消費(fèi)700.兩種沼氣池使用壽命到期后,每個(gè)需投資1000元維修,可繼續(xù)使用相同時(shí)間,村民最快多少年后可收回投資?

查看答案和解析>>

同步練習(xí)冊(cè)答案