【題目】小明住在學(xué)校正東方向200米處,從小明家出發(fā)向北走150米就到了李華家.若選取李華家為原點(diǎn),分別以正東、正北方向為x軸、y軸正方向建立平面直角坐標(biāo)系,則學(xué)校的坐標(biāo)為(   )

A. (-150,-200) B. (-200,-150) C. (0,-50) D. (-150,200)

【答案】B

【解析】從李華家向南走150米,再正西方向走200到學(xué)校,所以學(xué)校的坐標(biāo)為(-200,-150),故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x>y,則x+c_________y+c,5﹣2x_________5﹣2y.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系內(nèi)與點(diǎn)P(﹣2,1)關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有2位股東,20名工人、從2006年至2008年,公司每年股東的總利潤和每年工人的工資總額如圖所示.

(1)填寫下表:

年份

2006年

2007年

2008年

工人的平均工資/元

5000

股東的平均利潤/元

25000


(2)假設(shè)在以后的若干年中,每年工人的工資和股東的利潤都按上圖中的速度增長,那么到哪一年,股東的平均利潤是工人的平均工資的8倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.

(1)求證:△ADC≌△CEB.
(2)AD=6cm,DE=4cm,求BE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個正數(shù)x的兩個不同的平方根分別是2a﹣1和﹣a+2.
(1)求a和x的值;
(2)化簡:2|a+ |+|x﹣2 |﹣|3a+x|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1的小正方形組成的正方形網(wǎng)格中建立如圖片所示的平面直角坐標(biāo)系,已知格點(diǎn)三角形ABC(三角形的三個頂點(diǎn)都在小正方形上)

(1)畫出ABC關(guān)于直線l:x=﹣1的對稱三角形A1B1C1;并寫出A1、B1、C1的坐標(biāo).

(2)在直線x=﹣l上找一點(diǎn)D,使BD+CD最小,滿足條件的D點(diǎn)為

提示:直線x=﹣l是過點(diǎn)(﹣1,0)且垂直于x軸的直線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程ax23x+1=x2是一元二次方程,則a的取值范圍為(  )

A. a≠0B. a0C. a≠1D. a1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+3與x軸、y軸分別相交于點(diǎn)B、C,經(jīng)過B、C兩點(diǎn)的拋物線與x軸的另一個交點(diǎn)為A,頂點(diǎn)為P,且對稱軸為直線x=2.

(1)求該拋物線的解析式;

(2)連接PB、PC,求PBC的面積;

(3)連接AC,在x軸上是否存在一點(diǎn)Q,使得以點(diǎn)P,B,Q為頂點(diǎn)的三角形與ABC相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案