如圖所示,已知二次函數(shù)與坐標(biāo)軸分別交于A、D、B三點(diǎn),頂點(diǎn)為C!驹瓌(chuàng)】
(1)求tan∠BAC
(2)在y軸上是否存在一點(diǎn)P,使得△DOP與△ABC相似,如果存在,求出點(diǎn)P的坐標(biāo),如果不存在,說(shuō)明理由。
(3)Q是拋物線(xiàn)上一動(dòng)點(diǎn),使得以A、B、C、Q為端點(diǎn)的四邊形是一個(gè)梯形,請(qǐng)直接寫(xiě)出滿(mǎn)足條件的Q點(diǎn)的坐標(biāo)。(不要求寫(xiě)出解題過(guò)程)
解:(1)把y=0代入,得。
解得
即A(3,0),D(-1,0)
把x=0代入,得y=3
∴B(0,3)
把x=1代入
y=4,即C(1,4)。
過(guò)點(diǎn)C作CE⊥y軸,垂足為E。
∵△AOB和△BCE都是等腰直角三角形
∴∠ABC=90°且BC=,AB=。
∴tan∠BAC=。。。。。4分
(2)①P在原點(diǎn)時(shí),
∵PD=1,BP=3,∠BPD=∠ABC,且
即△DOP∽△ABC。。。。。。。。。。。。。。。。2分
②當(dāng)P在y軸負(fù)半軸時(shí),設(shè)P(0,a)
由①知∠DBP=∠BAC。
∴只需∠BDP=Rt∠即可。
此時(shí),易證△BDO∽△DOP
∴
∴OP=
∴P(0,)。。。。。。。。。。。。。。。。2分
②當(dāng)P在y軸正半軸時(shí),顯然△BDP不可能為Rt△。
∴所以滿(mǎn)足題意的P點(diǎn)為(0,0)或(0,)。
(3)(-2,-5),(4,-5),(2,3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(1)如圖1,在等邊△ABC中,點(diǎn)M是邊BC上的任意一點(diǎn)(不含端點(diǎn)B、C),聯(lián)結(jié)AM,以AM為邊作等邊△AMN,聯(lián)結(jié)CN.求證:∠ABC=∠ACN.
【類(lèi)比探究】
(2)如圖2,在等邊△ABC中,點(diǎn)M是邊BC延長(zhǎng)線(xiàn)上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說(shuō)明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是邊BC上的任意一點(diǎn)(不含端點(diǎn)B、C),聯(lián)結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.聯(lián)結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由.
xkb1.com
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知△ABC,用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不寫(xiě)作法)
(1)作∠ABC的平分線(xiàn)BD交AC于點(diǎn)D;
(2)作線(xiàn)段BD的垂直平分線(xiàn)交AB于點(diǎn)E,交BC于點(diǎn)F。由(1)(2)可得,你發(fā)現(xiàn)了BEDF是什么四邊形?(原創(chuàng))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問(wèn)題,不過(guò)當(dāng)時(shí)古希臘人還沒(méi)有尋求到它的求根公式,只能用圖解等方法來(lái)求解。在歐幾里得的《幾何原本》中,形如(a>0,b>0)的方程的圖解法是:以和b為兩直角邊做Rt△ABC,再在斜邊上截取BD=,則AD的長(zhǎng)就是所求方程的解。
(1)請(qǐng)利用所給的線(xiàn)段和線(xiàn)段b,作出方程的解。
(2)說(shuō)說(shuō)上述求法的不足之處
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在△ABC中,∠C=90°,AC=12,BC=5,現(xiàn)在AC為軸旋轉(zhuǎn)一周得到一個(gè)圓錐。則該圓錐的側(cè)面積為 ( )
(A)130π (B)90π (C)25π (D)65π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知⊙O的半徑為R,C、D是直徑AB的同側(cè)圓周上的兩點(diǎn),弧AC的度數(shù)為100°弧BC=2弧BD,動(dòng)點(diǎn)P在線(xiàn)段AB上,則PC+PD的最小值為 ( )(原創(chuàng))
A.R B.R C.R D.R
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
根據(jù)(1)中的計(jì)算結(jié)果的規(guī)律填空:
(Ⅰ)當(dāng),的取值范圍是 .
(Ⅱ) .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com