小李用換元法的數(shù)學思想求方程:(x2+1)2+4(x2+1)-5=0的解,他將(x2+1)看作一個整體設x2+1=y(y>0),那么原方程可化為y2+4y-5=0,解得y1=1,y2=-5(不合題意,舍去).當y=1時,x2+1=1,∴x2=0,∴x=0.故原方程的解為x=0,請利用這樣的數(shù)學思想解答下面問題:
在△ABC中,∠C=90°,兩條直角邊的長分別為a、b,斜邊的長為c,且(a2+b2)(a2+b2+1)=12,求斜邊c的長.

解:設a 2+b2=x(x>0),則(a 2+b2 )(a 2+b2+1)=12化為:x(x+1)=12,即x2+x-12=0,
解得:x 1=3,x 2=-4<0 (不合題意,舍去),
∴a 2+b2的值為3,
∵∠C=90°,
∴a 2+b 2=c2
∴c2=3,
∴c=
答:斜邊c的長為
分析:先設a 2+b2=x(x>0),則(a 2+b2 )(a 2+b2+1)=12可化為x2+x-12=0,求出x的解,得出a 2+b2的值為3,根據(jù)∠C=90°,得出a 2+b 2=c2,即可求出斜邊c的長.
點評:此題考查了換元法解一元二次方程,關鍵是把某個式子看作一個整體,用一個字母去代替它,實行等量替換,再進行求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

換元法是把一個比較復雜的數(shù)學式子的一部分看成是一個整體,用另一個字母代替這一部分(即換元).換元法的好處是能使式子得到簡化,各項的關系容易看清,便于解決問題.此方法充分體現(xiàn)了整體的數(shù)學思想.例如:用換元法解分式方程
2x-1
x
-
x
2x-1
=2
時,如果設
2x-1
x
=y
,并將原方程化為關于y的整式方程,那么這個整式方程是y2-2y-1=0,然后在解出y1和y2,再將y1和y2替換成
2x-1
x
=y1
2x-1
x
=y2
,即可解出x1和x2.請用換元法解方程:x2-
12
x2-2x
=2x-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小李用換元法的數(shù)學思想求方程:(x2+1)2+4(x2+1)-5=0的解,他將(x2+1)看作一個整體設x2+1=y(y>0),那么原方程可化為y2+4y-5=0,解得y1=1,y2=-5(不合題意,舍去).當y=1時,x2+1=1,∴x2=0,∴x=0.故原方程的解為x=0,請利用這樣的數(shù)學思想解答下面問題:
在△ABC中,∠C=90°,兩條直角邊的長分別為a、b,斜邊的長為c,且(a2+b2)(a2+b2+1)=12,求斜邊c的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

在一次數(shù)學興趣小組的活動課上,有下面的一段對話,請你閱讀完后再解答問題.
老師:同學們,今天我們來探索如下方程的解法:(
x
x-1
)2-4(
x
x-1
)+4=0

學生甲:老師,原方程可整理為
x2
(x-1)2
-
4x
x-1
+4=0
,再去分母,行得通嗎?
老師:很好,當然可以這樣做.
再仔細觀察,看看這個方程有什么特點?還可以怎樣解答?
學生乙:老師,我發(fā)現(xiàn)
x
x-1
是整體出現(xiàn)的!
老師:很好,我們把
x
x-1
看成一個整體,用y表示,即可設
x
x-1
=y,那么原方程就變?yōu)閥2-4y+4=0.
全體學生:噢,等號左邊是一個完全平方式?!方程可以變形成(y-2)2=0
老師:大家真會觀察和思考,太棒了!顯然y2-4y+4=0的根是y=2,那么就有
x
x-1
=2
學生丙:對啦,再解這兩個方程,可得原方程的根x=2,再驗根就可以了!
老師:同學們,通常我們把這種方法叫做換元法,這是一種重要的轉化方法.
全體同學:OK,換元法真神奇!
現(xiàn)在,請你用換元法解下列分式方程(組):
(1)(
2x
x-1
)2-
4x
x-1
+1=0

(2)
6
x-y
+
4
x+y
=3
9
x-y
-
1
x+y
=1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

小李用換元法的數(shù)學思想求方程:(x2+1)2+4(x2+1)-5=0的解,他將(x2+1)看作一個整體設x2+1=y(y>0),那么原方程可化為y2+4y-5=0,解得y1=1,y2=-5(不合題意,舍去).當y=1時,x2+1=1,∴x2=0,∴x=0.故原方程的解為x=0,請利用這樣的數(shù)學思想解答下面問題:
在△ABC中,∠C=90°,兩條直角邊的長分別為a、b,斜邊的長為c,且(a2+b2)(a2+b2+1)=12,求斜邊c的長.

查看答案和解析>>

同步練習冊答案