【題目】已知ABCCEF均為等腰直角三角形,∠ABC=∠CFE90°,連接AE,點GAE中點,連接BGGF

1)如圖1,當CEFE、F落在BC、AC邊上時,探究FGBG的關(guān)系;

2)如圖2,當CEFF落在BC邊上時,探究FGBG的關(guān)系.

【答案】(1) FG=BGFGBG;證明見詳解;(2FG=BGFGBG;證明見詳解;

【解析】

1)由∠AFE=ABE=90°,點GAE中點,則,則得到FG=BG,∠FGE=2FAG,∠BGE=2BAG,由∠FAG+BAG=45°,即可得到∠BGF=90°;

2)過點EEDAB,交AB延長線于點D,連接DGCG,根據(jù)題意,找出相應(yīng)的條件證明△GFE≌△GBDSAS),得到FG=BG,與(1)證法一樣,證明∠CGD=90°,通過等量代換即可得到∠FGB=90°.

解:(1FG=BG,FGBG;如圖1

∠ABC∠CFE90°,

∴△ABE和△AFE是直角三角形,

∵點GAE的中點,

,,

.,∠GAF=GFA,∠GAB=GBA,

∴∠FGE=2FAG,∠BGE=2BAG

∵∠BAC=FAG+BAG=45°

∴∠BGF=FGE+BGE=2(∠FAG+BAG=90°,

FGBG;

2;

過點EEDAB,交AB延長線于點D,連接DG,CG,

△ABC△CEF均為等腰直角三角形,EDAB

∴∠FBD=BFE=EDB=90°,

∴四邊形BFED是矩形,

BD=EF,

在直角三角形ADE和直角三角形ACE中,GAE中點,

DG=GE=AG=CG=,

∴∠GED=GDE

∴∠FEG=BDG,

∴△GFE≌△GBDSAS),

GF=GBCF=BD,

DG=AG=CG

∴△CGF≌△DGB,∠CAG=ACG,∠DAG=ADG

∴∠CGF=DGB,

∵∠CAG+DAG=45°,

CGE+DGE=2(∠CAG+DAG=90°,

即∠CGD=90°,

∴∠CGD-CGF+DGB=FGB=90°,

FGBG.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為提高飲水質(zhì)量,越來越多的居民開始選購家用凈水器.一商家抓住商機,從廠家購進了A、B兩種型號家用凈水器共160,A型號家用凈水器進價是150/,B型號家用凈水器進價是350/,購進兩種型號的家用凈水器共用去36000

1)求A、B兩種型號家用凈水器各購進了多少臺;

2)為使每臺B型號家用凈水器的毛利潤是A型號的2,且保證售完這160臺家用凈水器的毛利潤不低于11000求每臺A型號家用凈水器的售價至少是多少元?(注毛利潤=售價﹣進價)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標為(-1,0)B點坐標為(5,0)點C(0,5),M為它的頂點.

(1)求拋物線的解析式;

(2)MAB的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)將原來400平方米的正方形場地改建成300平方米的長方形場地,且長和寬之比為3∶2.如果把原來正方形場地的鐵柵欄圍墻利用起來圍成新場地的長方形圍墻,那么這些鐵柵欄是否夠用?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,OP平分∠AOBPAOA,PBOB,垂足為A,B,連接AB,下列結(jié)論中不一定成立的是(

A.PA=PBB.PO平分∠APBC.OA=OBD.AB平分OP

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtACB中,AC=BC=8,OAB的中點,以O為直角頂點作等腰直角三角形OEF,與邊AC,BC相交于點MN.有下列結(jié)論:①AM=CN;②CM+CN=8;③;④當MAC的中點時,OM=ON.其中正確結(jié)論的序號是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解八年級學生對(科學)、(技術(shù))、(工程)、(藝術(shù))、(數(shù)學)中哪一個領(lǐng)域最感興趣的情況,該校對八年級學生進行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下的條形圖和扇形圖,請根據(jù)圖中提供的信息,解答下列問題:

1)這次抽樣調(diào)查共調(diào)查了多少名學生?

2)補全條形統(tǒng)計圖;

3)求扇形統(tǒng)計圖中(數(shù)學)所對應(yīng)的圓心角度數(shù);

4)若該校八年級學生共有400人,請根據(jù)樣本數(shù)據(jù)估計該校八年級學生中對(科學)最感興趣的學生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,將該矩形沿對角線BD折疊,則圖中陰影部分的面積為________.

查看答案和解析>>

同步練習冊答案