(2005•黑龍江)已知菱形ABCD的邊長為6,∠A=60°,如果點P是菱形內(nèi)一點,且PB=PD=2,那么AP的長為   
【答案】分析:根據(jù)題意得,應分P與A在BD的同側(cè)與異側(cè)兩種情況進行討論.
解答:解:當P與A在BD的異側(cè)時:連接AP交BD于M,
∵AD=AB,DP=BP,
∴AP⊥BD(到線段兩端距離相等的點在垂直平分線上),
在直角△ABM中,∠BAM=30°,
∴AM=AB•cos30°=3,BM=AB•sin30°=3,
∴PM==,
∴AP=AM+PM=4;
當P與A在BD的同側(cè)時:連接AP并延長AP交BD于點M
AP=AM-PM=2;
當P與M重合時,PD=PB=3,與PB=PD=2矛盾,舍去.
AP的長為4或2
故答案為4或2
點評:本題注意到應分兩種情況討論,并且注意兩種情況都存在關系AP⊥BD,這是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•黑龍江)如圖所示,在平面直角坐標系中,Rt△ABC的斜邊AB在x軸上,AB=25,頂點C在y軸的負半軸上,tan∠ACO=,點P在線段OC上,且PO、PC的長(PO<PC)是關于x的方程x2-(2k+4)x+8k=0的兩根.
(1)求AC、BC的值;
(2)求P點坐標;
(3)在x軸上是否存在點Q,使以點A、C、P、Q為頂點的四邊形是梯形?若存在,請直接寫出直線PQ的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•黑龍江)如圖,在平面直角坐標系中,Rt△ABC的斜邊AB在x軸上,頂點C在y軸的負半軸上,tan∠ABC=,點P在線段OC上,且PO、PC的長(PO<PC)是方程x2-12x+27=0的兩根.
(1)求P點坐標;
(2)求AP的長;
(3)在x軸上是否存在點Q,使以點A、C、P、Q為頂點的四邊形是梯形?若存在,請直接寫出直線PQ的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前10日信息題復習題精選(1)(解析版) 題型:解答題

(2005•黑龍江)如圖,在平面直角坐標系中,Rt△ABC的斜邊AB在x軸上,頂點C在y軸的負半軸上,tan∠ABC=,點P在線段OC上,且PO、PC的長(PO<PC)是方程x2-12x+27=0的兩根.
(1)求P點坐標;
(2)求AP的長;
(3)在x軸上是否存在點Q,使以點A、C、P、Q為頂點的四邊形是梯形?若存在,請直接寫出直線PQ的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年黑龍江省中考數(shù)學試卷(課標卷)(解析版) 題型:填空題

(2005•黑龍江)已知拋物線y=ax2+bx+c經(jīng)過點(1,2)與(-1,4),則a+c的值是   

查看答案和解析>>

科目:初中數(shù)學 來源:2005年黑龍江省中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•黑龍江)如圖所示,在平面直角坐標系中,Rt△ABC的斜邊AB在x軸上,AB=25,頂點C在y軸的負半軸上,tan∠ACO=,點P在線段OC上,且PO、PC的長(PO<PC)是關于x的方程x2-(2k+4)x+8k=0的兩根.
(1)求AC、BC的值;
(2)求P點坐標;
(3)在x軸上是否存在點Q,使以點A、C、P、Q為頂點的四邊形是梯形?若存在,請直接寫出直線PQ的解析式;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案