【題目】已知矩形BEDG和矩形BNDQ中,BE=BN , DE=DN .
(1)將兩個(gè)矩形疊合成如上圖,求證:四邊形ABCD是菱形;
(2)若菱形ABCD的周長(zhǎng)為20,BE=3,求矩形BEDG的面積.
【答案】
(1)
解答:證明:作AR⊥BC于R,AS⊥CD于S,由題意知:AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形,∵矩形BEDG和矩形BNDQ中,BE=BN,DE=DN,∴AR=AS,∵ARBC=ASCD,∴BC=CD,∴平行四邊形ABCD是菱形.
(2)
解答:解:∵菱形ABCD的周長(zhǎng)為20,
∴AD=AB=BC=CD=5,
∵BE=3,
∴AE=4,
∴DE=5+4=9,
∴矩形BEDG的面積為:3×9=27.
【解析】(1)作AR⊥BC于R , AS⊥CD于S , 根據(jù)題意先證出四邊形ABCD是平行四邊形,再由BC=CD得平行四邊形ABCD是菱形;(2)根據(jù)菱形的性質(zhì)得出AD的長(zhǎng),進(jìn)而得出AE的長(zhǎng),再利用矩形面積公式求出即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用矩形的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若△ABC∽△DEF,且對(duì)應(yīng)高線比為4:9,則△ABC與△DEF的周長(zhǎng)比為( )
A.2:3B.3:2C.4:9D.16:81
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,延長(zhǎng)AB至E,延長(zhǎng)CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點(diǎn).
(1)求證:CP=AQ;
(2)若BP=1,PQ=,∠AEF=45°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元二次方程x2﹣4x+2m﹣6=0有兩個(gè)相等的實(shí)數(shù)根,則m等于( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,已知AD>AB.
(1)實(shí)踐與操作:作∠BAD的平分線交BC于點(diǎn)E,在AD上截取AF=AB,連接EF;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)猜想并證明:猜想四邊形ABEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)正n邊形的每個(gè)內(nèi)角為156°,則這個(gè)正n邊形的邊數(shù)是( )
A. 13 B. 14 C. 15 D. 16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com