【題目】(1)某學習小組在探究三角形全等時,發(fā)現(xiàn)了下面這種典型的基本圖形.如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線L經(jīng)過點A,BD⊥直線L,CE⊥直線L,垂足分別為點D、E.證明:DE=BD+CE.

(2)組員小劉想,如果三個角不是直角,那結(jié)論是否會成立呢?如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線L上,并且有∠BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

(3)數(shù)學老師贊賞了他們的探索精神,并鼓勵他們運用這個知識來解決問題:如圖③,過△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,AHBC邊上的高,延長HAEG于點I,求證:IEG的中點.

【答案】(1)證明見解析;(2)DE=BD+CE,證明見解析;(3)證明見解析.

【解析】

(1)由條件可證明ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;

(2)由條件可知∠BAD+CAE=180°-α,且∠DBA+BAD=180°-α,可得∠DBA=CAE,結(jié)合條件可證明ABD≌△CAE,同(1)可得出結(jié)論;

(3)EEMHIM,GNHI的延長線于N,由條件可知EM=AH=GN,可得EM=GN,結(jié)合條件可證明EMI≌△GNI,可得出結(jié)論IEG的中點.

1)BD⊥直線l,CE⊥直線l,

∴∠BDA=CEA=90°,

∵∠BAC=90°,

∴∠BAD+CAE=90°,

∵∠BAD+ABD=90°,

∴∠CAE=ABD,

ADBCEA中,

,

∴△ADB≌△CEA(AAS),

AE=BD,AD=CE,

DE=AE+AD=BD+CE;

(2)DE=BD+CE,證明如下:

∵∠BDA=BAC=α,

∴∠DBA+BAD=BAD+CAE=180°﹣α,

∴∠DBA=CAE,

ADBCEA中.

∴△ADB≌△CEA(AAS),

AE=BD,AD=CE,

DE=AE+AD=BD+CE;

(3)如圖,過EEMHIM,GNHI的延長線于N,

∴∠EMI=GNI=90°,

由(1)和(2)的結(jié)論可知EM=AH=GN,

EM=GN,

EMIGNI中,,

∴△EMI≌△GNI(AAS),

EI=GI,

IEG的中點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P,Q分別是邊長為4 cm的等邊三角形ABCAB,BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1 cm/s,連接AQ,CP,相交于點M.下面四個結(jié)論正確的有________(填序號).①BP=CM; ②△ABQ ≌△CAP ;③∠CMQ的度數(shù)不變,始終等于60;④當?shù)?/span>ss時,△PBQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△BDE中,∠BDE=90°,BD=6 ,點D的坐標是(7,0),∠BDO=15°,將△BDE旋轉(zhuǎn)到△ABC的位置,點C在BD上,則旋轉(zhuǎn)中心的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.
(1)如圖1,連接DE,BG,M為線段BG的中點,連接AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;
(2)在圖1的基礎上,將正方形AEFG繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點,連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的兩條中線AD、CE交于點G,且AD⊥CE.連接BG并延長與AC交于點F,若AD=9,CE=12,則GF為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,設立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被平均分成20份),并規(guī)定:顧客每購物滿200元,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會.如果轉(zhuǎn)盤停止后,指針正好對準紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得50元、30元、20元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉(zhuǎn)盤,那么可直接獲得10元的購物券.
(1)求轉(zhuǎn)動一次轉(zhuǎn)盤獲得購物券的概率;
(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購物券,你認為哪種方式對顧客更合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.

(1)當直線MN繞點C旋轉(zhuǎn)到圖1的位置時,求證:DE=AD+BE;

(2)當直線MN繞點C旋轉(zhuǎn)到圖2的位置時,求證:DE=AD-BE;

(3)當直線MN繞點C旋轉(zhuǎn)到圖3的位置時,試問DE、AD、BE具有怎樣的等量關(guān)系?請直接寫出這個等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某書店老板去批發(fā)市場購買某種圖書.第一次用1200元購書若干本,并按該書定價20元出售,很快售完.由于該書暢銷,第二次購書時,每本書批發(fā)價比第一次提高了25%,他用1800元所購該書數(shù)量比第一次多20本,又按定價售出全部圖書.
(1)求該書原來每本的批發(fā)價;
(2)該老板這兩次售書一共賺了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如.善于思考的小明進行了以下探索:

(其中a、b、m、n均為整數(shù)),則有.

.這樣小明就找到了一種把類似的式子化為平方式的方法。

請你仿照小明的方法探索并解決下列問題:(a,b,m,n均為正整數(shù))

(1),用含m、n的式子分別表示a、b,得:a=___,b=___;

(2)當a=7,n=1時,填空:7+ =( +2

(3)若,求a的值.

查看答案和解析>>

同步練習冊答案