如圖,AD是△ABC的角平分線,以點C為圓心,CD為半徑作圓交BC的延長線于點E,交AD于點F,交AE于點M,且∠B=∠CAE,EF:FD=4:3.

(1)求證:點F是AD的中點;

(2)求cos∠AED的值;

(3)如果BD=10,求半徑CD的長.

考點:

相似三角形的判定與性質(zhì);勾股定理;圓周角定理;解直角三角形.

分析:

(1)由AD是△ABC的角平分線,∠B=∠CAE,易證得∠ADE=∠DAE,即可得ED=EA,又由ED是直徑,根據(jù)直徑所對的圓周角是直角,可得EF⊥AD,由三線合一的知識,即可判定點F是AD的中點;

(2)首先連接DM,設(shè)EF=4k,df=3k,然后由勾股定理求得ED的長,繼而求得DM與ME的長,由余弦的定義,即可求得答案;

(3)易證得△AEC∽△BEA,然后由相似三角形的對應(yīng)邊成比例,可得方程:(5k)2=k•(10+5k),解此方程即可求得答案.

解答:

(1)證明:∵AD是△ABC的角平分線,

∴∠1=∠2,

∵∠ADE=∠1+∠B,∠DAE=∠2+∠3,且∠B=∠3,

∴∠ADE=∠DAE,

∴ED=EA,

∵ED為⊙O直徑,

∴∠DFE=90°,

∴EF⊥AD,

∴點F是AD的中點;

(2)解:連接DM,

設(shè)EF=4k,df=3k,

則ED==5k,

AD•EF=AE•DM,

∴DM===k,

∴ME==k,

∴cos∠AED==

(3)解:∵∠B=∠3,∠AEC為公共角,

∴△AEC∽△BEA,

∴AE:BE=CE:AE,

∴AE2=CE•BE,

∴(5k)2=k•(10+5k),

∵k>0,

∴k=2,

∴CD=k=5.

點評:

此題考查了相似三角形的判定與性質(zhì)、圓周角定理、等腰三角形的判定與性質(zhì)、勾股定理以及三角函數(shù)等知識.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,AD是△ABC的高線,且AD=2,若將△ABC及其高線平移到△A′B′C′的位置,則A′D′和B′D′位置關(guān)系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC是角平分線,DE⊥AB于點E,DF⊥AC于點F,連接EF交AD于點G,則AD與EF的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、已知:如圖,AD是△ABC的角平分線,且 AB:AC=3:2,則△ABD與△ACD的面積之比為
3:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的邊BC上的中線,已知AB=5cm,AC=3cm.
(1)求△ABD與△ACD的周長之差.
(2)若AB邊上的高為2cm,求AC邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AD是△ABC的中線,CE是△ACD的中線,DF是△CDE的中線,如果△DEF的面積是2,那么△ABC的面積為( 。

查看答案和解析>>

同步練習(xí)冊答案