如圖,AD是△ABC的角平分線,以點C為圓心,CD為半徑作圓交BC的延長線于點E,交AD于點F,交AE于點M,且∠B=∠CAE,EF:FD=4:3.
(1)求證:點F是AD的中點;
(2)求cos∠AED的值;
(3)如果BD=10,求半徑CD的長.
考點:
相似三角形的判定與性質(zhì);勾股定理;圓周角定理;解直角三角形.
分析:
(1)由AD是△ABC的角平分線,∠B=∠CAE,易證得∠ADE=∠DAE,即可得ED=EA,又由ED是直徑,根據(jù)直徑所對的圓周角是直角,可得EF⊥AD,由三線合一的知識,即可判定點F是AD的中點;
(2)首先連接DM,設(shè)EF=4k,df=3k,然后由勾股定理求得ED的長,繼而求得DM與ME的長,由余弦的定義,即可求得答案;
(3)易證得△AEC∽△BEA,然后由相似三角形的對應(yīng)邊成比例,可得方程:(5k)2=k•(10+5k),解此方程即可求得答案.
解答:
(1)證明:∵AD是△ABC的角平分線,
∴∠1=∠2,
∵∠ADE=∠1+∠B,∠DAE=∠2+∠3,且∠B=∠3,
∴∠ADE=∠DAE,
∴ED=EA,
∵ED為⊙O直徑,
∴∠DFE=90°,
∴EF⊥AD,
∴點F是AD的中點;
(2)解:連接DM,
設(shè)EF=4k,df=3k,
則ED==5k,
∵AD•EF=AE•DM,
∴DM===k,
∴ME==k,
∴cos∠AED==;
(3)解:∵∠B=∠3,∠AEC為公共角,
∴△AEC∽△BEA,
∴AE:BE=CE:AE,
∴AE2=CE•BE,
∴(5k)2=k•(10+5k),
∵k>0,
∴k=2,
∴CD=k=5.
點評:
此題考查了相似三角形的判定與性質(zhì)、圓周角定理、等腰三角形的判定與性質(zhì)、勾股定理以及三角函數(shù)等知識.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com