【題目】如圖,在矩形ABCD中,點(diǎn)H為邊BC的中點(diǎn),點(diǎn)G為線段DH上一點(diǎn),且∠BGC=90°,延長BGCD于點(diǎn)E,延長CGAD于點(diǎn)F,當(dāng)CD=4DE=1時,則DF的長為(

A.2B.C.D.

【答案】A

【解析】

延長AD,BE相交于點(diǎn)M,可得DFG∽△HCG,DMG∽△HBG,根據(jù)相似三角形的性質(zhì)可得DF=DM,由MDE∽△CDF可得,進(jìn)而得出,再根據(jù)比例的性質(zhì)解答即可.

解:如圖,延長AD,BE相交于點(diǎn)M

DFCH,

∴△DFG∽△HCG,

DMBH,

∴△DMG∽△HBG,

,

CH=BH, DF=DM,

又∵矩形

MDE∽△CDF

DF

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,BC=4,D為邊AB上一動點(diǎn)(B點(diǎn)除外),以CD為一邊作正方形CDEF,連接BE,則△BDE面積的最大值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種植戶計(jì)劃將一片荒山改良后種植沃柑,經(jīng)市場調(diào)查得知,當(dāng)種植沃柑的面積x不超過15畝時,每畝可獲得利潤y=1900元;超過15畝時,每畝獲得利潤y(元)與種植面積x(畝)之間的函數(shù)關(guān)系:y=kx+b,并且當(dāng)x=20時,y=1800;當(dāng)x=25時,y=1700

1)請求出yx的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

2)設(shè)種植戶種植x畝沃柑所獲得的總利潤為w元,由于受條件限制,種植沃柑面積x不超過50畝,求該種植戶種植多少畝獲得的總利潤最大,并求總利潤w(元)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】疫情期間,口罩供不應(yīng)求.某口罩企業(yè)為指導(dǎo)生產(chǎn),在二月份期間對甲乙丙丁四條生產(chǎn)線日產(chǎn)量進(jìn)行調(diào)研,根據(jù)調(diào)研數(shù)據(jù),繪制出如下兩幅不完整的統(tǒng)計(jì)圖.觀察統(tǒng)計(jì)圖,請解答以下問題:

1)求二月份該企業(yè)口罩單日產(chǎn)量(二月份計(jì)天).

2)求乙條生產(chǎn)線單日產(chǎn)量是多少,并補(bǔ)全頻數(shù)分布直方圖.

3)為滿足市場需求,該公司改進(jìn)生產(chǎn)技術(shù),使得口罩產(chǎn)量在二月的基礎(chǔ)上逐月提高,已知月份口罩產(chǎn)量為萬只,若三月份和四月份口罩月產(chǎn)量平均增長率相同,求每月的平均增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國北斗導(dǎo)航裝備的不斷更新,極大方便人們的出行.光明中學(xué)組織學(xué)生利用導(dǎo)航到金牛山進(jìn)行研學(xué)活動,到達(dá)A地時,發(fā)現(xiàn)C地恰好在A地正北方向,且距離A11.46千米.導(dǎo)航顯示路線應(yīng)沿北偏東60°方同走到B地,再沿北偏西37°方向走一段距離才能到達(dá)C地,求BC兩地的距離(精確到1千米)

(參考數(shù)據(jù)sin53°≈0.80,cos53°≈0.60≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某水產(chǎn)養(yǎng)殖戶開發(fā)一個三角形狀的養(yǎng)殖區(qū)域,A、B、C三點(diǎn)的位置如圖所示.已知∠CAB=105°,∠B=45°,AB=100米.(參考數(shù)據(jù):≈141,≈173sin20°≈034,cos20°≈094,tan20°≈036,結(jié)果保留整數(shù))

1)求養(yǎng)殖區(qū)域ABC的面積;

2)養(yǎng)殖戶計(jì)劃在邊BC上選一點(diǎn)D,修建垂釣棧道AD,測得∠CAD=40°,求垂釣棧道AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),頂點(diǎn)坐標(biāo),則下列結(jié)論:

,,;②;③關(guān)于的方程有兩個不相等的實(shí)數(shù)根;④.其中結(jié)論正確的是(

A.B.②③C.②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個閉合時的夾子,圖2是該夾子的主視示意圖,夾子兩邊為AC,BD(點(diǎn)A與點(diǎn)B重合),點(diǎn)O是夾子轉(zhuǎn)軸位置,OEAC于點(diǎn)E,OFBD于點(diǎn)FOE=OF=1cm,AC=BD=6cm, CE=DF, CE:AE=2:3.按圖示方式用手指按夾子,夾子兩邊繞點(diǎn)O轉(zhuǎn)動

(1)當(dāng)EF兩點(diǎn)的距離最大值時,以點(diǎn)A,B,C,D為頂點(diǎn)的四邊形的周長是_____ cm.

(2)當(dāng)夾子的開口最大(點(diǎn)C與點(diǎn)D重合)時,A,B兩點(diǎn)的距離為_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,港口A在觀測站O的正東方向,OA=6km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為(  )

A. 3km B. 3km C. 4km D. (3-3)km

查看答案和解析>>

同步練習(xí)冊答案