已知:二次函數(shù)y=x2-4x+a,下列說法中錯(cuò)誤的個(gè)數(shù)是( 。
①若圖象與x軸有交點(diǎn),則a≤4;
②若該拋物線的頂點(diǎn)在直線y=2x上,則a的值為-8;
③當(dāng)a=3時(shí),不等式x2-4x+a>0的解集是1<x<3;
④若將圖象向上平移1個(gè)單位,再向左平移3個(gè)單位后過點(diǎn)(1,-2),則a=-3;
⑤若拋物線與x軸有兩個(gè)交點(diǎn),橫坐標(biāo)分別為x1、x2,則當(dāng)x取x1+x2時(shí)的函數(shù)值與x取0時(shí)的函數(shù)值相等.
分析:①根據(jù)二次函數(shù)與圖象與x軸交點(diǎn)的關(guān)系,利用根的判別式解答即可;
②求出二次函數(shù)定點(diǎn)的表達(dá)式,代入直線解析式即可求出a的值;
③將a=3代入不等式,即可求其解集;
④將解析式化為頂點(diǎn)式,利用解析式平移的規(guī)律解答;
⑤利用根與系數(shù)的關(guān)系將x1+x2的值代入解析式進(jìn)行計(jì)算即可.
解答:解:①∵圖象與x軸有交點(diǎn),則△=16-4×1×a≥0,解得a≤4;故本選項(xiàng)正確;
②∵二次函數(shù)y=x2-4x-a的頂點(diǎn)坐標(biāo)為(2,a-4),代入y=2x得,a-4=2×2,a=8,故本選項(xiàng)錯(cuò)誤;
③當(dāng)a=3時(shí),y=x2-4x+3,圖象與x軸交點(diǎn)坐標(biāo)為:(1,0),(3,0),
故不等式x2-4x+a>0的解集是:x<1或x>3,故本選項(xiàng)錯(cuò)誤;
④將圖象向上平移1個(gè)單位,再向左平移3個(gè)單位后解析式為:y=(x+1)2+a-3,
∵圖象過點(diǎn)(1,-2),∴將此點(diǎn)代入得:-2=(1+1)2+a-3,解得:a=-3,故本選項(xiàng)正確;
⑤由根與系數(shù)的關(guān)系,x1+x2=4,
當(dāng)x=4時(shí),y=16-16+a=a,
當(dāng)x=0時(shí),y=a,故本選項(xiàng)正確.
故選:B.
點(diǎn)評(píng):此題考查了拋物線與x軸的交點(diǎn)、根與系數(shù)的關(guān)系、二次函數(shù)圖象與幾何變換、待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)與不等式(組)等知識(shí),綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:二次函數(shù)的表達(dá)式為y=2x2+4x-1.
(1)設(shè)這個(gè)函數(shù)圖象的頂點(diǎn)坐標(biāo)為P,與y軸的交點(diǎn)為A,求P、A兩點(diǎn)的坐標(biāo);
(2)將二次函數(shù)的圖象向上平移1個(gè)單位,設(shè)平移后的圖象與x軸的交點(diǎn)為B、C(其中點(diǎn)B在點(diǎn)C的左側(cè)),求B、C兩點(diǎn)的坐標(biāo)及tan∠APB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)是(-2,0),點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(OC<OB)是方程x2-10x+24=0的兩個(gè)根.
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)求這個(gè)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)y=x2-2(m-1)x-1-m的圖象與x軸交于A(x1,0)、B(x2,0),x1<0<x2,與y軸交于點(diǎn)C,且滿足
1
AO
-
1
OB
=
2
CO

(1)求這個(gè)二次函數(shù)的解析式;
(2)是否存在著直線y=kx+b與拋物線交于點(diǎn)P、Q,使y軸平分△CPQ的面積?若存在,求出k、b應(yīng)滿足的條件;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-3,0),與y軸精英家教網(wǎng)交于點(diǎn)C,點(diǎn)D(-2,-3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,求出PA+PD的最小值;
(3)點(diǎn)G拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)E,使B、D、E、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)y=ax2+bx+c(a≠0)中的x和y滿足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值為
3
3
;
(2)求出這個(gè)二次函數(shù)的解析式;
(3)當(dāng)0<x<3時(shí),則y的取值范圍為
-1≤y<3
-1≤y<3

查看答案和解析>>

同步練習(xí)冊(cè)答案