如圖,拋物線(xiàn)y=與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求點(diǎn)A、B的坐標(biāo);
(2)設(shè)D為已知拋物線(xiàn)的對(duì)稱(chēng)軸上的任意一點(diǎn),當(dāng)△ACD的面積等于△ACB的面積時(shí),求點(diǎn)D的坐標(biāo);
(3)若直線(xiàn)l過(guò)點(diǎn)E(4,0),M為直線(xiàn)l上的動(dòng)點(diǎn),當(dāng)以A、B、M為頂點(diǎn)所作的直角三角形有且只有三個(gè)時(shí),求直線(xiàn)l的解析式.

【答案】分析:(1)A、B點(diǎn)為拋物線(xiàn)與x軸交點(diǎn),令y=0,解一元二次方程即可.
(2)根據(jù)題意求出△ACD中AC邊上的高,設(shè)為h.在坐標(biāo)平面內(nèi),作AC的平行線(xiàn),平行線(xiàn)之間的距離等于h.根據(jù)等底等高面積相等,可知平行線(xiàn)與坐標(biāo)軸的交點(diǎn)即為所求的D點(diǎn).
從一次函數(shù)的觀(guān)點(diǎn)來(lái)看,這樣的平行線(xiàn)可以看做是直線(xiàn)AC向上或向下平移而形成.因此先求出直線(xiàn)AC的解析式,再求出平移距離,即可求得所作平行線(xiàn)的解析式,從而求得D點(diǎn)坐標(biāo).
注意:這樣的平行線(xiàn)有兩條,如答圖1所示.
(3)本問(wèn)關(guān)鍵是理解“以A、B、M為頂點(diǎn)所作的直角三角形有且只有三個(gè)”的含義.
因?yàn)檫^(guò)A、B點(diǎn)作x軸的垂線(xiàn),其與直線(xiàn)l的兩個(gè)交點(diǎn)均可以與A、B點(diǎn)構(gòu)成直角三角形,這樣已經(jīng)有符合題意的兩個(gè)直角三角形;第三個(gè)直角三角形從直線(xiàn)與圓的位置關(guān)系方面考慮,以AB為直徑作圓,當(dāng)直線(xiàn)與圓相切時(shí),根據(jù)圓周角定理,切點(diǎn)與A、B點(diǎn)構(gòu)成直角三角形.從而問(wèn)題得解.
注意:這樣的切線(xiàn)有兩條,如答圖2所示.
解答:解:(1)令y=0,即=0,
解得x1=-4,x2=2,
∴A、B點(diǎn)的坐標(biāo)為A(-4,0)、B(2,0).

(2)拋物線(xiàn)y=的對(duì)稱(chēng)軸是直線(xiàn)x=-=-1,
即D點(diǎn)的橫坐標(biāo)是-1,
S△ACB=AB•OC=9,
在Rt△AOC中,AC===5,
設(shè)△ACD中AC邊上的高為h,則有AC•h=9,解得h=
如答圖1,在坐標(biāo)平面內(nèi)作直線(xiàn)平行于AC,且到AC的距離=h=,這樣的直線(xiàn)有2條,分別是l1和l2,則直線(xiàn)與對(duì)稱(chēng)軸x=-1的兩個(gè)交點(diǎn)即為所求的點(diǎn)D.
設(shè)l1交y軸于E,過(guò)C作CF⊥l1于F,則CF=h=,
∴CE==
設(shè)直線(xiàn)AC的解析式為y=kx+b,將A(-4,0),C(0,3)坐標(biāo)代入,
得到,解得,
∴直線(xiàn)AC解析式為y=x+3.
直線(xiàn)l1可以看做直線(xiàn)AC向下平移CE長(zhǎng)度單位(個(gè)長(zhǎng)度單位)而形成的,
∴直線(xiàn)l1的解析式為y=x+3-=x-
則D1的縱坐標(biāo)為×(-1)-=,∴D1(-1,).
同理,直線(xiàn)AC向上平移個(gè)長(zhǎng)度單位得到l2,可求得D2(-1,
綜上所述,D點(diǎn)坐標(biāo)為:D1(-1,),D2(-1,).

(3)如答圖2,以AB為直徑作⊙F,圓心為F.過(guò)E點(diǎn)作⊙F的切線(xiàn),這樣的切線(xiàn)有2條.
連接FM,過(guò)M作MN⊥x軸于點(diǎn)N.
∵A(-4,0),B(2,0),
∴F(-1,0),⊙F半徑FM=FB=3.
又FE=5,則在Rt△MEF中,
ME==4,sin∠MFE=,cos∠MFE=
在Rt△FMN中,MN=MF•sin∠MFE=3×=,
FN=MF•cos∠MFE=3×=,則ON=,
∴M點(diǎn)坐標(biāo)為(
直線(xiàn)l過(guò)M(,),E(4,0),
設(shè)直線(xiàn)l的解析式為y=kx+b,則有
,解得,
所以直線(xiàn)l的解析式為y=x+3.
同理,可以求得另一條切線(xiàn)的解析式為y=x-3.
綜上所述,直線(xiàn)l的解析式為y=x+3或y=x-3.
點(diǎn)評(píng):本題解題關(guān)鍵是二次函數(shù)、一次函數(shù)以及圓等知識(shí)的綜合運(yùn)用.難點(diǎn)在于第(3)問(wèn)中對(duì)于“以A、B、M為頂點(diǎn)所作的直角三角形有且只有三個(gè)”條件的理解,這可以從直線(xiàn)與圓的位置關(guān)系方面入手解決.本題難度較大,需要同學(xué)們對(duì)所學(xué)知識(shí)融會(huì)貫通、靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線(xiàn)y1與y2都與x軸交于點(diǎn)O(0,0)和點(diǎn)A,y1的頂點(diǎn)是B(2,-1),y2的頂點(diǎn)是C(2,-3),P是y1上的一個(gè)動(dòng)點(diǎn),過(guò)P作y軸的平行線(xiàn)交y2于點(diǎn)Q,分別過(guò)P,Q作x軸的平行線(xiàn),分別交y1,y2于點(diǎn)P′,Q′,連接P′Q′.
(1)四邊形PP′Q′Q 是
形.
(2)求y1與y2關(guān)于x的函數(shù)關(guān)系式.
(3)設(shè)P點(diǎn)的橫坐標(biāo)為t(t>2且t≠4),四邊形PP′Q′Q的周長(zhǎng)為y,試求y與t的函數(shù)關(guān)系式.
(4)當(dāng)四邊形PP′Q′Q是正方形,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)C1:y=a(x+2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B精英家教網(wǎng)的左側(cè)),點(diǎn)B的橫坐標(biāo)是1;
(1)求a的值;
(2)如圖,拋物線(xiàn)C2與拋物線(xiàn)C1關(guān)于x軸對(duì)稱(chēng),將拋物線(xiàn)C2向右平移,平移后的拋物線(xiàn)記為C3,拋物線(xiàn)C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)O成中心對(duì)稱(chēng)時(shí),求拋物線(xiàn)C3的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:北京期末題 題型:解答題

如圖,已知拋物線(xiàn)C1的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)B的橫坐標(biāo)是1。
(1)求a的值;
(2)如圖,拋物線(xiàn)C2與拋物線(xiàn)C1關(guān)于x軸對(duì)稱(chēng),將拋物線(xiàn)C2向右平移,平移后的拋物線(xiàn)記為C3,拋物線(xiàn)C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)O成中心對(duì)稱(chēng)時(shí),求拋物線(xiàn)C3的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線(xiàn):與x軸交于A、B(A在B左側(cè)),頂點(diǎn)為C(1,-2),

【小題1】求此拋物線(xiàn)的關(guān)系式;并直接寫(xiě)出點(diǎn)A、B的坐標(biāo)
【小題2】求過(guò)A、B、C三點(diǎn)的圓的半徑.
【小題3】在拋物線(xiàn)上找點(diǎn)P,在y軸上找點(diǎn)E,使以A、B、P、E為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P、E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案