【題目】如圖,半圓O是一個(gè)量角器,△AOB為一紙片,AB交半圓于點(diǎn)D,OB交半圓于點(diǎn)C,若點(diǎn)C、D、A在量角器上對(duì)應(yīng)讀數(shù)分別為45°,70°,160°,則∠AOB的度數(shù)為;∠A的度數(shù)為 .
【答案】115°;45°.
【解析】∠AOB=∠MOA﹣∠MOC=160°-45°=115°,
連接OD,
則OA=OD,∵∠AOD=160°﹣70°=90°,∴∠A= (180°﹣90°)=45°.
所以答案是:115°、45°.
【考點(diǎn)精析】利用等腰三角形的性質(zhì)和圓心角、弧、弦的關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等;在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛公共汽車分別自A、B兩地同時(shí)出發(fā),相向而行。甲車行駛85千米后與乙車相遇,然后繼續(xù)前進(jìn)。兩車到達(dá)對(duì)方的出發(fā)點(diǎn)等候30分鐘立即依原路返回。當(dāng)甲車行駛65千米后又與乙車相遇,求A、B兩地的距離。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
中華優(yōu)秀傳統(tǒng)文化是中華民族的“根”和“魂”,是我們必須世代傳承的文化根脈、文化基因.為傳承優(yōu)秀傳統(tǒng)文化,某校為各班購進(jìn)《三國(guó)演義》和《水滸傳》連環(huán)畫若干套,其中每套《三國(guó)演義》連環(huán)畫的價(jià)格比每套《水滸傳》連環(huán)畫的價(jià)格貴60元,用4800元購買《水滸傳》連環(huán)畫的套數(shù)是用3600元購買《三國(guó)演義》連環(huán)畫套數(shù)的2倍,求每套《水滸傳》連環(huán)畫的價(jià)格.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線、相交于點(diǎn),,平分.
(1)若,求的度數(shù);
(2)若,請(qǐng)直接寫出的度數(shù);
(3)觀察(1)、(2)的結(jié)果,猜想和的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格上有6個(gè)三角形:①△ABC,②△CDB,③△DEB,④△FBG,⑤△HGF,⑥△EKF. 在②~⑥中,與①相似的三角形的個(gè)數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面解答過程,并填空或填理由.
已知如下圖,點(diǎn)分別是和上的點(diǎn),、分別交于點(diǎn)、,,.
試說明:.
∵(已知)
(__________________)
∴(__________________)
∴(__________________)
∴(__________________)
又∵(已知)
∴(__________________)
∴(__________________)
∴(__________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將ABCD沿CE折疊,使點(diǎn)D落在BC邊上的F處,點(diǎn)E在AD上.
(1)求證:四邊形ABFE為平行四邊形;
(2)若AB=4,BC=6,求四邊形ABFE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB為⊙O的直徑,C為⊙O上一點(diǎn),AD與過C點(diǎn)的切線垂直,垂足為D,AD交⊙O于點(diǎn)E,∠CAB=30°
(1)如圖①,求∠DAC的大;
(2)如圖②,若⊙O的半徑為4,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,于點(diǎn),點(diǎn)在邊上,且,連接、、.若,求的度數(shù).
證明:∵
∴(____________________________)
在和中,
∴(____________________________)
∴______________(____________________________)
∵在中,,
∴____________________
∵,
∴________________
∴( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com