【題目】選擇適當方法解下列方程:

1x24x+10(用配方法);    

23xx1)=22x

3)(x2)(x3)=12

42x22x50(公式法).

【答案】1x1,x2; 2x11; x2=﹣;(3x16; x2=﹣1;(4x1; x2

【解析】

1)利用配方法得到(x223,然后利用直接開平方法解方程;

2)先變形得到3xx1+2x1)=0,然后利用因式分解法解方程;

3)先把方程化為一般式,然后利用因式分解法解方程;

4)利用求根公式法解方程.

解:(1x24x=﹣1,

x24x+4=﹣1+4,

x223,

x2

所以x1x2

23xx1)=21x),

3xx1+2x1)=0

x1)(3x+2)=0,

x103x+20

所以x11; x2=﹣;

3x25x+612

x25x60,

x6)(x+1)=0,

所以x16; x2=﹣1,

4)解方程:2x22x50;

x

x1; x2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了手機伴我健康行主題活動,他們隨機抽取部分學生進行使用手機目的每周使用手機的時間的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知查資料的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:

(1)在扇形統(tǒng)計圖中,玩游戲對應的百分比為______,圓心角度數(shù)是______度;

(2)補全條形統(tǒng)計圖;

(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AC8,BC6CDAB于點D.點P從點D出發(fā),沿線段DC向點C運動,點Q從點C出發(fā),沿線段CA向點A運動,兩點同時出發(fā),速度都為每秒1個單位長度,當點P運動到C時,兩點都停止.設運動時間為t秒.

1)求線段CD的長;

2)當t為何值時,△CPQ與△ABC相似?

3)是否存在某一時刻,使得PQ分△ACD的面積為23?若存在,求出t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtACB中,ACB=90°,AC=BC,D是AB上的一個動點(不與點A,B重合),連接CD,將CD繞點C順時針旋轉(zhuǎn)90°得到CE,連接DE,DE與AC相交于點F,連接AE.下列結(jié)論:①△ACE≌△BCD;②BCD=25°,則∠AED=65°;③DE2=2CFCA;④若AB=3,AD=2BD,則AF=.其中正確的結(jié)論是______.(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.

(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請直接寫出結(jié)論;

(2)現(xiàn)將圖①中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;

(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△OAB繞點O逆時針旋轉(zhuǎn)80°得到△OCD,點A與點C是對應點.

(1)畫出△OAB關(guān)于點O對稱的圖形(保留畫圖痕跡,不寫畫法);

(2)若∠A=110°,∠D=40°,求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC的一條邊BC的長為5,另兩邊AB,AC的長分別為關(guān)于x的一元二次方程的兩個實數(shù)根。

1)求證:無論k為何值,方程總有兩個不相等的實數(shù)根;

2)當k=2時,請判斷△ABC的形狀并說明理由;

3k為何值時,△ABC是等腰三角形,并求△ABC的周長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在四邊形 ABCD 中,∠A+∠C=180°,DB 平分∠ADC.

(1)如圖 1求證:AB=BC

(2)如圖 2,若∠ADB=60°,,試判斷△ABC 的形狀,并說明理由.

(3)如圖 3,在(2)得條件下,在 AB 上取一點 E, BC 上取一點 F,連接 CE、AF 交于點 M,連接 EF,若∠CMF=60°,AD=EF=7,CD=8(CFBF),求 AE 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形的邊長和一條對角線的長均為2 cm,則菱形的面積為( )

A. 3cm2 B. 4 cm2 C. cm2 D. 2cm2

查看答案和解析>>

同步練習冊答案