【題目】商場(chǎng)某種新商品每件進(jìn)價(jià)是,在試銷(xiāo)期間發(fā)現(xiàn),當(dāng)每件商品售價(jià)為元時(shí),每天可銷(xiāo)售件,當(dāng)每件商品售價(jià)高于元時(shí),每漲價(jià)元,日銷(xiāo)售量就減少件.據(jù)此規(guī)律,請(qǐng)回答:
(1)當(dāng)每件商品售價(jià)定為元時(shí),每天可銷(xiāo)售多少件商品,商場(chǎng)獲得的日盈利是多少?
(2)在上述條件不變,商品銷(xiāo)售正常的情況下,每件商品的銷(xiāo)售價(jià)定為多少元時(shí),商場(chǎng)日盈利可達(dá)到元?(提示:盈利售價(jià)進(jìn)價(jià))
【答案】(1)每天可銷(xiāo)售件商品,商場(chǎng)獲得的日盈利是元;(2)每件商品售價(jià)為元時(shí),商場(chǎng)日盈利達(dá)到元.
【解析】
(1)首先求出每天可銷(xiāo)售商品數(shù)量,然后可求出日盈利.
(2)設(shè)商場(chǎng)日盈利達(dá)到1600元時(shí),每件商品售價(jià)為x元,根據(jù)每件商品的盈利×銷(xiāo)售的件數(shù)=商場(chǎng)的日盈利,列方程求解即可.
解:(1)當(dāng)每件商品售價(jià)為元時(shí),比每件商品售價(jià)元高出元,
即(元),
則每天可銷(xiāo)售商品件,即(件),
商場(chǎng)可獲日盈利為(元)。
答:每天可銷(xiāo)售件商品,商場(chǎng)獲得的日盈利是元
(2)設(shè)商場(chǎng)日盈利達(dá)到元時(shí),每件商品售價(jià)為元,
則每件商品比元高出元,每件可盈利元
每日銷(xiāo)售商品為(件)
依題意得方程
整理,得,即
解得
答:每件商品售價(jià)為元時(shí),商場(chǎng)日盈利達(dá)到元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書(shū)香校園”活動(dòng)中,學(xué)校計(jì)劃開(kāi)展四項(xiàng)活動(dòng):“A﹣國(guó)學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書(shū)法”,要求每位同學(xué)必須且只能參加其中一項(xiàng)活動(dòng),學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計(jì)如下:
(1)如圖,希望參加活動(dòng)C占20%,希望參加活動(dòng)B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中,希望參加活動(dòng)D所占圓心角為 度,根據(jù)題中信息補(bǔ)全條形統(tǒng)計(jì)圖.
(2)學(xué),F(xiàn)有800名學(xué)生,請(qǐng)根據(jù)圖中信息,估算全校學(xué)生希望參加活動(dòng)A有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開(kāi)時(shí),雙翼邊緣的端點(diǎn)A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時(shí),可以通過(guò)閘機(jī)的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的對(duì)稱(chēng)軸為直線,且拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中,.
(1)若直線經(jīng)過(guò)、兩點(diǎn),求直線和拋物線的解析式;
(2)在拋物線的對(duì)稱(chēng)軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)為拋物線的對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)某品牌的T恤衫成本是每件10元。根據(jù)市場(chǎng)調(diào)查,以單價(jià)13元批發(fā)給經(jīng)銷(xiāo),商銷(xiāo)商愿意經(jīng)銷(xiāo)5000件,并且表示每降價(jià)0.1元,愿意多經(jīng)銷(xiāo)500件。服裝廠決定批發(fā)價(jià)在不低于11.4元的前提下,將批發(fā)價(jià)下降0.1x元.
(1)求銷(xiāo)售量y與x的關(guān)系,并求出x的取值范圍;
(2)不考慮其他因素,請(qǐng)問(wèn)廠家批發(fā)單價(jià)是多少時(shí)所獲利潤(rùn)W可以最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E,點(diǎn)F分別是邊BC,邊CD上的動(dòng)點(diǎn),且BE=CF,AE與BF相交于點(diǎn)P.若點(diǎn)M為邊BC的中點(diǎn),點(diǎn)N為邊CD上任意一點(diǎn),則MN+PN的最小值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,港口A在觀測(cè)站O的正東方向,OA=6,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時(shí)從觀測(cè)站O處測(cè)得該船位于北偏東60°的方向,則該船航行的距離(即AB的長(zhǎng))為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD,過(guò)點(diǎn)B有一條直線1與正方形ABCD的對(duì)角線AC所在直線相交于點(diǎn)G,過(guò)點(diǎn)C、A分別作直線1的垂線段CE、AF于點(diǎn)E、F,對(duì)角線AC、BD相交于點(diǎn)O,連接OE、OF.
(1)如圖1,猜測(cè)OE、OF有怎樣的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;
(2)若正方形邊長(zhǎng)為10.
①若直線1在如圖1的位置,當(dāng)時(shí),求EG的長(zhǎng);
②若直線1在如圖2的位置,當(dāng)時(shí),請(qǐng)直接寫(xiě)出EG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園安全”越來(lái)越受到人們的關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息回答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有______人,條形統(tǒng)計(jì)圖中m的值為______;
(2)扇形統(tǒng)計(jì)圖中“了解很少”部分所對(duì)應(yīng)扇形的圓心角的度數(shù)為______;
(3)若該中學(xué)共有學(xué)生1800人,根據(jù)上述調(diào)查結(jié)果,可以估計(jì)出該學(xué)校學(xué)生中對(duì)校園安全知識(shí)達(dá)到“非常了解”和“基本了解”程度的總?cè)藬?shù)為______人;
(4)若從對(duì)校園安全知識(shí)達(dá)到“非常了解”程度的2名男生和2名女生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com