如圖,已知AB⊥BD,AB∥ED,AB=ED,要說明△ABC≌△EDC,若以“SAS”為依據(jù),還要添加的條件為________;若添加條件AC=EC,則可以用________公理(或定理)判定全等.

BC=DC    HL
分析:根據(jù)已知條件知∠B=∠D=90°.若以“SAS”為依據(jù)判定△ABC≌△EDC,結合已知條件缺少對應邊BC=DC;若添加條件AC=EC,則可以利用直角三角形全等的判定定理證明△ABC≌△EDC.
解答:∵AB⊥BD,AB∥ED,
∴ED⊥BD,
∴∠B=∠D=90°;
①又∵AB=ED,
∴在△ABC和△EDC中,
當BC=DC時,
△ABC≌△EDC(SAS);
②在Rt△ABC和△Rt△EDC中,
,
∴Rt△ABC≌Rt△EDC(HL);
故答案分別是:BC=DC、HL.
點評:本題綜合考查了全等三角形的判定、直角三角形的全等的判定.三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主,判定兩個三角形全等,先根據(jù)已知條件或求證的結論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、如圖,已知AB⊥BD,ED⊥BD,C是BD上一點,AB=CD,BC=ED,那么下列結論中,不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

49、如圖,已知AB⊥BD,垂足為B,ED⊥BD,垂足為D,AB=CD,BC=DE,則∠ACE=
90
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,已知AB⊥BD,AC⊥CD,∠A=35°,則∠D的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•永州)如圖,已知AB⊥BD,CD⊥BD
(1)若AB=9,CD=4,BD=10,請問在BD上是否存在P點,使以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似?若存在,求BP的長;若不存在,請說明理由;
(2)若AB=9,CD=4,BD=12,請問在BD上存在多少個P點,使以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似?并求BP的長;
(3)若AB=9,CD=4,BD=15,請問在BD上存在多少個P點,使以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似?并求BP的長;
(4)若AB=m,CD=n,BD=l,請問m,n,l滿足什么關系時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個P點?兩個P點?三個P點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB⊥BD,BC⊥CD,AD=a,CD=b,則BD的長的取值范圍為(  )

查看答案和解析>>

同步練習冊答案