【題目】已知關(guān)于x的一元二次方程2x2+(a+4)x+a=0.
(1)求證:無(wú)論a為任何實(shí)數(shù),此方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)拋物線與x軸的一個(gè)交點(diǎn)的橫坐標(biāo)為,其中a≠0,將拋物線C1向右平移個(gè)單位,再向上平移個(gè)單位,得到拋物線C2.求拋物線C2的解析式;
(3)點(diǎn)A(m,n)和B(n,m)都在(2)中拋物線C2上,且A、B兩點(diǎn)不重合,求代數(shù)式2m3﹣2mn+2n3的值.
【答案】(1)見(jiàn)解析;(2)y=2x2﹣3.(3).
【解析】
試題分析:(1)先求出判別式的值,根據(jù)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,即可得出結(jié)論;
(2)將點(diǎn)(,0)代入拋物線C1解析式,得出a的值,從而確定C1解析式,根據(jù)平移的規(guī)律可得出拋物線C2的解析式;
(3)將點(diǎn)A(m,n)和B(n,m)代入拋物線C2的解析式,通過(guò)整理、化簡(jiǎn)可得出代數(shù)式2m3﹣2mn+2n3的值.
(1)證明:∵△=(a+4)2﹣4×2a=a2+16,
而a2≥0,
∴a2+16>0,即△>0.
∴無(wú)論a為任何實(shí)數(shù),此方程總有兩個(gè)不相等的實(shí)數(shù)根.
(2)∵當(dāng)時(shí),y=0,
∴2×()2+(a+4)×+a=0,
∴a2+3a=0,即a(a+3)=0,
∵a≠0,
∴a=﹣3.
∴拋物線C1的解析式為y=2x2+x﹣3=2(x+)2﹣,
∴拋物線C1的頂點(diǎn)為(﹣,﹣),
∴拋物線C2的頂點(diǎn)為(0,﹣3).
∴拋物線C2的解析式為y=2x2﹣3.
(3)∵點(diǎn)A(m,n)和B(n,m)都在拋物線C2上,
∴n=2m2﹣3,m=2n2﹣3,
∴n﹣m=2(m2﹣n2),
∴n﹣m=2(m﹣n)(m+n),
∴(m﹣n)[2(m+n)+1]=0,
∵A、B兩點(diǎn)不重合,即m≠n,
∴2(m+n)+1=0,
∴m+n=﹣,
∵2m2=n+3,2n2=m+3,
∴2m3﹣2mn+2n3=2m2m﹣2mn+2n2n=(n+3)m﹣2mn+(m+3)n=3(m+n)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年8月26日,第二屆青奧會(huì)在南京舉行,甲、乙、丙、丁四位跨欄運(yùn)動(dòng)員在為該運(yùn)動(dòng)會(huì)積極準(zhǔn)備.在某天“110米跨欄”訓(xùn)練中,每人各跑5次,據(jù)統(tǒng)計(jì),他們的平均成績(jī)都是13.2秒,甲、乙、丙、丁的成績(jī)的方差分別是0.11,0.03,0.05,0.02.則當(dāng)天這四位運(yùn)動(dòng)員“110米跨欄”的訓(xùn)練成績(jī)最穩(wěn)定的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,E為BC中點(diǎn),作∠AEC的角平分線交AD于F點(diǎn).若AB=6,AD=16,則FD的長(zhǎng)度為何?( )
A.4 B.5 C.6 D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)去年種植南瓜10畝,畝產(chǎn)量為2000kg,今年該農(nóng)場(chǎng)擴(kuò)大了種植面積,并引進(jìn)新品種,使總產(chǎn)量增長(zhǎng)到60000kg.已知今年種植面積的增長(zhǎng)率是今年平均畝產(chǎn)量增長(zhǎng)率的2倍,求今年平均畝產(chǎn)量的增長(zhǎng)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于平面內(nèi)任一點(diǎn)(a,b),若規(guī)定以下三種變換:①△(a,b)=(-a,b);②○(a,b)=(-a,-b);③□(a,b)=(a,-b).按照以上變換,例如:△(○(1,2))=(1,-2),則○(□(3,4))=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,(a,m,b均為常數(shù),a≠0),則方程a(x+m+2)2+b=0的解是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E在AD上,EC平分∠BED.
(1)△BEC是否為等腰三角形?為什么?
(2)若AB=a,∠ABE=45°,求BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com